
Keccak specifications

Guido Bertoni1, Joan Daemen1, Michaël Peeters2 and Gilles Van Assche1

1STMicroelectronics
2NXP Semiconductors

http://keccak.noekeon.org/

October 27, 2008

Keccak (pronounced [kEtSak]) is a family of hash functions that are based on the sponge
construction [1] and use as a building block a permutation from a set of 7 permutations.
In this document, we specify these permutations, the Keccak sponge functions and the
parameter values we propose for use in our SHA-3 candidates. We also give conventions for
bit and byte numbering, for using the arbitrary-long output mode and for naming parts of
the Keccak state. These specifications give all the necessary information to implement the
Keccak sponge functions.

For more information, and for the reference code, please refer to the Keccak web page
given above.

1

http://keccak.noekeon.org/

1 The Keccak-f permutations

There are 7 Keccak-f permutations, indicated by Keccak-f [b], where b = 25 × 2` and
` ranges from 0 to 6. Keccak-f [b] is a permutation over s ∈ Zb

2, where the bits of s are
numbered from 0 to b− 1. We call b the width of the permutation. Our SHA-3 candidates
use Keccak-f [1600].

In the sequel, the permutation Keccak-f [b] is described on a state a that is a three-
dimensional array of elements of GF(2), namely a[5][5][w], with w = 2`. The mapping between
the bits of s and those of a is s[w(5y + x) + z] = a[x][y][z]. The expression a[x][y][z] with
x, y ∈ Z5 and z ∈ Zw, denotes the bit in position (x, y, z). It follows that indexing starts from
zero; expressions in the x and y coordinates should be taken modulo 5 and expressions in the
z coordinate modulo w. We may sometimes omit the [z] index, both the [y][z] indices or all
three indices, implying that the statement is valid for all values of the omitted indices.

Keccak-f [b] is an iterated permutation, consisting of a sequence of nr rounds R, indexed
with ir from 0 to nr − 1. A round consists of five steps:

R = ι ◦ χ ◦ π ◦ ρ ◦ θ, with

θ : a[x][y][z] ← a[x][y][z] +
4∑

y′=0

a[x− 1][y′][z] +
4∑

y′=0

a[x+ 1][y′][z − 1],

ρ : a[x][y][z] ← a[x][y][z − (t+ 1)(t+ 2)/2],

with t satisfying 0 ≤ t < 24 and
(

0 1
2 3

)t(1
0

)
=
(
x
y

)
in GF(5)2×2,

or t = −1 if x = y = 0,

π : a[x][y] ← a[x′][y′], with
(
x
y

)
=
(

0 1
2 3

)(
x′

y′

)
,

χ : a[x] ← a[x] + (a[x+ 1] + 1)a[x+ 2],
ι : a ← a+ RC[ir].

The additions and multiplications between the terms are in GF(2). With the exception of
the value of the round constants RC[ir], these rounds are identical. The round constants are
given by (with the first index denoting the round number)

RC[ir][0][0][2j − 1] = rc[j + 7ir] for all 0 ≤ j ≤ `,

and all other values of RC[ir][x][y][z] are zero. The values rc[t] ∈ GF(2) are defined as the
output of a binary linear feedback shift register (LFSR):

rc[t] =
(
xt mod x8 + x6 + x5 + x4 + 1

)
mod x in GF(2)[x].

The number of rounds nr is determined by the width of the permutation, namely,

nr = 12 + `.

2

2 The Keccak sponge functions

We obtain a Keccak[r, c, d] sponge function, with parameters capacity c, bitrate r and di-
versifier d, if we apply the sponge construction as described in [1], to Keccak-f [r + c] and
by applying a specific padding to the input. This is specified in Algorithm 1, where || denotes
concatenation, ⊕ bitwise addition of strings of equal length and bscn truncation of string s
to its first n bits.

Algorithm 1 Keccak[r, c, d]
Input M ∈ Z∗2
Output Z ∈ Z∗2
P = pad(M, 8)||enc(d, 8)||enc(r/8, 8)
P = pad(P, r)
Let P = P0||P1|| . . . ||P|P |−1 with Pi ∈ Zr

2

s = 0r+c

for i = 0 to |P | − 1 do
s = s⊕ (Pi||0c)
s = Keccak-f [r + c](s)

end for
Z = empty string
while output is requested do
Z = Z||bscr
s = Keccak-f [r + c](s)

end while

It makes use of the following functions:

• pad(M,n) returns a bit string obtained by appending to the bit string M a single 1 and
the smallest number of zeroes such that the length is a multiple of n.

• enc(x, n) returns a string of n bits coding the integer x, from the least significant bit to
the most significant bit, i.e., it returns the string x0, x1, . . . , xn−1 when x =

∑n−1
i=0 xi2i.

This specifies Keccak[r, c, d] for any combination of r > 0 that is a multiple of 8 and c
such that r + c is a width supported by the Keccak-f permutations and any integer value
of d in the range [0, 28 − 1].

The default value for d is 0 and the default values for r and c are 1024 and 576 respectively.
Hence we have:

• Keccak[r, c] , Keccak[r, c, d = 0],

• Keccak[] , Keccak[r = 1024, c = 576].

Initially, the state has value 0b, called the root state. The root state has a fixed value
and shall never be considered as an input. This is crucial for the security of the sponge
construction.

3

3 Security claim for the Keccak sponge functions

To simplify our claim, we first define the notion of shortcut attack:

Definition 1. An attack on a specific sponge function is a shortcut attack if the expected
success probability is higher when mounted on that specific function than it would be on a
random oracle for a given attack workload. Here the workload of an attack on a sponge
function shall be expressed in terms of the number of calls to the underlying function f , while
the cost of an attack on a random oracle is the sum of the workload of all queries sent to the
random oracle by the attacker. The workload depends on the padding and on the bitrate.

Definition 2. In the case of Keccak[r, c, d], the workload of a single query with input length
l and requesting n output bits is given by⌊

8b l
8c+ 24
r

⌋
+
⌈n
r

⌉
calls.

For each of the supported parameter values, we make a flat sponge claim [1].

Claim 1. The expected success probability of any shortcut attack against Keccak[r, c, d] with
a workload equivalent to N calls to Keccak-f [r + c] or its inverse shall be smaller than or
equal to

1− exp
(
−N(N + 1)2−(c+1)

)
.

We exclude here weaknesses due to the mere fact that Keccak-f [r + c] can be described
compactly and can be efficiently executed, e.g., the so-called random oracle implementation
impossibility.

Note that the claimed capacity is equal to the capacity used by the sponge construction.

4 The Keccak candidates for SHA-3

Our SHA-3 candidates are:

1. SHA3-224: bKeccak[r = 1024, c = 576, d = 28]c224

2. SHA3-256: bKeccak[r = 1024, c = 576, d = 32]c256

3. SHA3-384: bKeccak[r = 512, c = 1088, d = 48]c384

4. SHA3-512: bKeccak[r = 512, c = 1088, d = 64]c512

5. For other output sizes: Keccak[] (with default parameters), where the output is trun-
cated by the user at the desired output length, and up to the security claim of Section 3.
See also Section 5.2.

4

5 Conventions

5.1 Bit and byte numbering

In this section, we detail the mapping between the bits of the input to the Keccak sponge
functions, and their representation in the SHA-3 API defined by NIST [2]. The bits of the
input message M are numbered from i = 0 to i = |M | − 1. When the bits are gathered in
bytes, it implies the equivalent numbering i = ibit + 8ibyte with 0 ≤ ibit < 8.

In our internal convention, ibit = 0 indicates the least significant bit (LSB) of a byte while
ibit = 7 indicates the most significant one (MSB). The NIST convention [2] is different: The
bits of a byte are numbered from 0 for the MSB to 7 for the LSB. To be compatible with the
API convention outside and with our convention inside, the following formal bit-reordering
is performed on the input bit string M before it is processed:

• For all bytes that contain 8 bits, position ibit+8ibyte is mapped to position 7−ibit+8ibyte.

• For the last byte if it contains p < 8 bits, position ibit + 8ibyte is mapped to position
(p− 1)− ibit + 8ibyte.

This mapping is bijective and does not affect the security.
In practice, the above operation cancels with the change of convention, so there is nothing

to do, except:

• For the last byte if it contains p < 8 bits, the bits are shifted by 8− p positions towards
the LSB (i.e., to the “right”).

5.2 Extending the API for arbitrarily-long output

The Keccak[] sponge function can produce an arbitrarily-long bit string. To enable this, we
have made the following additions to the API [2].

In the Init function, the hashbitlen parameter can be set to 224, 256, 384 or 512 to
select the parameters as specified in Section 4, with a fixed output length. If the hashbitlen
parameter is set to 0, the arbitrarily-long output mode is activated.

To use the arbitrarily-long output mode, the following sequence of calls needs to be made.

• First, Init is called with hashbitlen=0. This selects the Keccak[] sponge function.

• The input data is processed as usual with the Update function.

• The Finalize function indicates that the whole input message has been fetched (i.e.,
it switches the sponge to the squeezing phase [1]). This function has to be called, but
the hashval parameter is ignored, as no output is generated yet. This parameter can
safely be set to 0 (the null pointer).

• The output is then generated by calling the Squeeze function as many times as desired.

5

HashReturn Squeeze(hashState *state, BitSequence *output, DataLength outputLength);

• Parameters:

– state: a structure that holds the hashState information

– output: the storage for output to be returned

– outputLength: the length, in bits, of the output to produce; must be a multiple
of 8

• Returns:

– SUCCESS – on success

5.3 Parts of the state

In this subsection, we wish to define names of parts of the Keccak-f state, as illustrated in
Figure 1. This section is not, as such, needed to implement the Keccak sponge functions.
Nevertheless, it may help use a common terminology when analyzing or describing properties
of Keccak-f .
The one-dimensional parts are:

• A row is a set of 5 bits with constant y and z coordinates.

• A column is a set of 5 bits with constant x and z coordinates.

• A lane is a set of w bits with constant x and y coordinates.

The two-dimensional parts are:

• A sheet is a set of 5w bits with constant x coordinate.

• A plane is a set of 5w bits with constant y coordinate.

• A slice is a set of 25 bits with constant z coordinate.

References

[1] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, Sponge functions, Ecrypt Hash
Workshop 2007, May 2007, also available as public comment to NIST from http://www.
csrc.nist.gov/pki/HashWorkshop/Public_Comments/2007_May.html.

[2] NIST, ANSI C cryptographic API profile for SHA-3 candidate algorithm submissions, revi-
sion 5, February 2008, available from http://csrc.nist.gov/groups/ST/hash/sha-3/
Submission_Reqs/crypto_API.html.

6

http://www.csrc.nist.gov/pki/HashWorkshop/Public_Comments/2007_May.html
http://www.csrc.nist.gov/pki/HashWorkshop/Public_Comments/2007_May.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Submission_Reqs/crypto_API.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Submission_Reqs/crypto_API.html

Figure 1: Naming conventions for parts of the Keccak-f state

7

	The Keccak-f permutations
	The Keccak sponge functions
	Security claim for the Keccak sponge functions
	The Keccak candidates for SHA-3
	Conventions
	Bit and byte numbering
	Extending the API for arbitrarily-long output
	Parts of the state

