
Keccak sponge function family

main document

Guido Bertoni1

Joan Daemen1

Michaël Peeters2

Gilles Van Assche1

http://keccak.noekeon.org/

Version 1.0
October 27, 2008

1STMicroelectronics
2NXP Semiconductors

http://keccak.noekeon.org/

Keccak

2 / 78

Contents

1 Introduction 7
1.1 NIST requirements . 7
1.2 Acknowledgments . 8

2 Design rationale summary 9
2.1 Choosing the sponge construction . 9
2.2 Choosing an iterated permutation . 10
2.3 Designing the Keccak-f permutations . 10
2.4 Choosing the parameter values . 11

3 The sponge construction 13
3.1 Security of the sponge construction . 13

3.1.1 Indifferentiability from a random oracle 13
3.1.2 Indifferentiability of multiple sponge functions 14
3.1.3 Immunity to generic attacks . 15
3.1.4 Randomized hashing . 15
3.1.5 Keyed modes . 16

3.2 Rationale for the padding . 16
3.2.1 Sponge input preparation . 16
3.2.2 Multi-capacity property . 17
3.2.3 Digest-length dependent digest . 17

3.3 Parameter choices . 17
3.3.1 Capacity . 17
3.3.2 Width . 18
3.3.3 The default sponge function Keccak[] 18

3.4 The four critical operations of a sponge . 18
3.4.1 Definitions . 19
3.4.2 The operations . 19

4 Sponge functions with an iterated permutation 21
4.1 The philosophy . 21

4.1.1 There should be no better attacks than generic attacks 21
4.1.2 The impossibility of implementing a random oracle 21
4.1.3 The choice between a permutation and a transformation 22
4.1.4 The choice of an iterated permutation 22

4.2 Some structural distinguishers . 23

3 / 78

Keccak CONTENTS

4.2.1 Differential cryptanalysis . 23
4.2.2 Linear cryptanalysis . 24
4.2.3 Algebraic expressions . 25
4.2.4 The constrained-input constrained-output (CICO) problem 26
4.2.5 Multi-block CICO problems . 27
4.2.6 Cycle structure . 28

4.3 Inner collision . 28
4.3.1 Exploiting a differential trail . 28
4.3.2 Exploiting a differential . 29
4.3.3 Truncated trails and differentials . 29

4.4 Path to an inner state . 30
4.5 Detecting a cycle . 30
4.6 Binding an output to a state . 30
4.7 Classical hash function criteria . 30

4.7.1 Collision resistance . 30
4.7.2 Preimage resistance . 31
4.7.3 Second preimage resistance . 31
4.7.4 Length extension . 31
4.7.5 Pseudo-random function . 31
4.7.6 Output subset properties . 32

5 The Keccak-f permutations 33
5.1 Translation invariance . 33
5.2 The Matryoshka structure . 34
5.3 The step mappings of Keccak-f . 34

5.3.1 Properties of χ . 35
5.3.2 Properties of θ . 36
5.3.3 Properties of π . 38
5.3.4 Properties of ρ . 39
5.3.5 Properties of ι . 40
5.3.6 The order of steps within a round . 41

5.4 Choice of parameters: the number of rounds 41
5.5 Differential and linear cryptanalysis . 41

5.5.1 Trail propagation . 41
5.5.2 The Matryoshka consequence . 42
5.5.3 The column parity kernel . 42
5.5.4 One and two-round trails . 43
5.5.5 Three-round trails: kernel vortices . 43
5.5.6 Beyond three-round trails: choice of π 45
5.5.7 Truncated trails and differentials . 47
5.5.8 Other group operations . 47
5.5.9 Differential and linear cryptanalysis variants 47
5.5.10 Bounds for symmetric trails . 48

5.6 Solving CICO problems . 49
5.7 Strength in keyed mode . 49
5.8 Symmetry weaknesses . 49
5.9 Experimental data . 49

4 / 78

CONTENTS Keccak

5.9.1 Differential probability distributions 49
5.9.2 Correlation distributions . 52
5.9.3 Algebraic normal form experiments . 55
5.9.4 Solving CICO problems algebraically 58
5.9.5 Cycle distributions . 58

6 Usage 61
6.1 Usage scenario’s for a sponge function . 61

6.1.1 Random-oracle interface . 61
6.1.2 Linking to the security claim . 61
6.1.3 Examples of modes of use . 62

6.2 Backward compatibility with old standards 62
6.2.1 Input block length and output length 62
6.2.2 Initial value . 63
6.2.3 HMAC . 63
6.2.4 NIST and other relevant standards . 63

7 Implementation 65
7.1 Bit and byte numbering conventions . 65
7.2 General aspects . 66
7.3 Software implementation . 66

7.3.1 Optimized for speed . 66
7.3.2 Reference platform . 68
7.3.3 Using SIMD instructions . 69
7.3.4 Protection against side channel attacks 69
7.3.5 Estimation on 8-bit processors . 69

7.4 Hardware implementation . 70
7.4.1 High-speed core . 71
7.4.2 Variants of the high-speed core . 72
7.4.3 Low-area coprocessor . 72
7.4.4 Protection against side channel attacks 74

5 / 78

Keccak CONTENTS

6 / 78

Chapter 1

Introduction

Keccak [7] is a family of cryptographic hash functions [57] or, more accurately, sponge
functions [6]. This document describes the properties of the Keccak family and presents
its members as candidates to NIST’s request for a new cryptographic hash algorithm family
called SHA-3 [43].

The Keccak family is defined in a separate document [7], which is a prerequisite to
this document. While the Keccak definition is fixed, this present document is likely to
evolve over time, so we suggest the reader to obtain the latest version from our website
http://keccak.noekeon.org/.

The document is organized as follows. The design choices behind the Keccak sponge
functions are summarized in Chapter 2. Chapters 3–5 provide a security analysis and a
rationale for our design choices. Each of these three chapters looks at a particular level, from
top to bottom.

• Chapter 3 looks at the use of the sponge construction in our submission.

• Chapter 4 gives more insight on the use of an iterated permutation in the sponge
construction.

• Chapter 5 looks more particularly at Keccak-f , the chosen permutation.

Examples of modes of use, as well as other details regarding the use of the Keccak sponge
functions, are provided in Chapter 6. Finally, Chapter 7 takes a look at the software and
hardware implementation aspects.

1.1 NIST requirements

In this section, we provide a mapping from the items required by NIST to the appropriate
sections in this document.

• Requirements in [43, Section 2.B.1]

– The complete specifications can be found in [7].

– Design rationale: a summary is provided in Chapter 2, with pointers to sections
with more details.

7 / 78

http://keccak.noekeon.org/

Keccak 1. Introduction

– Any security argument and a preliminary analysis: this is the purpose of the
complete Chapters 3–5.

– Tunable parameters: a summary is provided in Section 2.4, with pointers to sec-
tions with more details.

– Recommended value for each digest size: see [7, Section 1] for the number of rounds
and [7, Section 4] for the other parameters.

– Bounds below which we expect cryptanalysis to become practical: this can be
found in Sections 3.3.2 and 5.4.

• Requirements in [43, Section 2.B.2]

– The estimated computational efficiency can be found in Chapter 7.
– A description of the platform used to generate the estimate can be found in Sec-

tions 7.3.1 and 7.3.2.
– The speed estimate on the reference platform can be found in Section 7.3.2.

• Requirements in [43, Section 2.B.3]

– The known answer and Monte Carlo results can be found on the optical media.

• Requirements in [43, Section 2.B.4]

– The expected strength of Keccak is stated in [7, Section 3].
– The link between the security claim and the expected strength criteria listed in

[43, Section 4.A] can be found in Section 6.1.2. More details can be found in
Sections 3.1.3, 3.1.4, 3.1.5 and 4.7.

– For HMAC specifically, see also Section 6.2.3.
– Other pseudo random functions (PRF) constructions: some modes of use are pro-

posed in Section 6.1.

• Requirements in [43, Section 2.B.5]

– We formally state that we have not inserted any trapdoor or any hidden weakness
in Keccak. Moreover, we believe that the structure of the Keccak-f permutation
does not offer enough degrees of freedom to hide a trapdoor or any other weakness.

• Requirements in [43, Section 2.B.6]

– Advantages and limitations: a summary is provided in Chapter 2, with pointers
to sections with more details.

1.2 Acknowledgments

We wish to thank (in no particular order) Charles Bouillaguet and Pierre-Alain Fouque for
discussing their results later published in [10] with us, Dmitry Khovratovich for discussing
not yet published results [33] with us, Yves Moulart, Bernard Kasser and all our colleagues at
STMicroelectronics and NXP Semiconductors for creating the working environment in which
we could work on this, and especially Joris Delclef and Jean-Louis Modave for kindly lending
us fast hardware.

8 / 78

Chapter 2

Design rationale summary

The purpose of this chapter is to list the design choices and to briefly motivate them, although
further analysis is provided in the subsequent chapters.

2.1 Choosing the sponge construction

We start with defining a generic attack:

Definition 1. A shortcut attack [7] on a sponge function is a generic attack if it does not
exploit specific properties of the underlying permutation or transformation.

The Keccak hash function makes use of the sponge construction, following the definition
of [6, 8]1. This has the following advantages with respect to constructions that make use of
a compression function:

Provability It has a proven upper bound for the success probability, and hence also a lower
bound for the expected workload, of generic attacks. We refer to Chapter 3 for a more
in-depth discussion.

Simplicity Compared to the other constructions for which upper bounds have been proven
for the success of generic attacks, the sponge construction is very simple, and it also
provides a bound that can be expressed in a simple way.

Variable-length output It can generate outputs of any length and hence a single function
can be used for different output lengths.

Flexibility Security level can be incremented at the cost of speed by simply increasing the
capacity, using the same permutation (or transformation).

Functionality Thanks to its long outputs and proven security bounds with respect to generic
attacks, a sponge function can be used in a straightforward way as a MAC function,
stream cipher, deterministic pseudorandom bit generator and a mask generating func-
tion (see Section 6.1).

To support arbitrary bit strings as input, the sponge construction requires a padding function.
We refer to Section 3.2 for a rationale for the specific padding function we have used.

1Note that RadioGatún [5] and Grindahl [34] are not sponge functions.

9 / 78

Keccak 2. Design rationale summary

2.2 Choosing an iterated permutation

The sponge construction requires an underlying function f , either a transformation or a
permutation. Informally speaking, f should be such that it does not have properties that can
be exploited in shortcut attacks. We have chosen a permutation, constructed as a sequence of
(almost) identical rounds because of the following advantages:

Block cipher experience An iterated permutation is an iterated block cipher with a fixed
key. In its design one can build on knowledge obtained from block cipher design and
cryptanalysis (see Chapter 5).

Memory efficiency Often a transformation is built by taking a permutation and adding a
feedforward loop. This implies that (at least part of) the input must be kept during the
complete computation. This is not the case for a permutation, leading to a relatively
small RAM footprint.

Compactness Iteration of a single round leads to a compact specification and potentially
compact code and hardware circuits.

2.3 Designing the Keccak-f permutations

The design criterion for the Keccak-f permutations is to have no properties that can be
exploited in a shortcut attack when being used in the sponge construction. It is constructed
as an iterated block cipher similar to Noekeon [22] and Rijndael [23], with the key schedule
replaced by some simple round constants. Here we give a rationale for its features:

Bit-oriented structure Attacks where the bits are grouped (e.g., in bytes), such as integral
cryptanalysis and truncated trails or differentials, are unsuitable against our structure.

Bitwise logical operations and fixed rotations Dependence on CPU word length is only
due to rotations, leading to an efficient use of CPU resources on a wide range of pro-
cessors. Implementation requires no large tables, removing the risk of table-lookup
based cache miss attacks. They can be programmed as a fixed sequence of instructions,
providing protection against timing attacks.

Symmetry This allows to have very compact code in software (see Section 7.3) and a very
compact co-processor circuit (see Section 7.4.3) suitable for constrained environments.

Parallelism Thanks to its symmetry and the chosen operations, the design is well-suited
for ultra-fast hardware implementations and the exploitation of SIMD instructions and
pipelining in CPUs.

Round degree 2 This makes the analysis with respect to differential and linear cryptanal-
ysis easier, leads to relatively simple (albeit large) systems of algebraic equations and
allows the usage of very powerful protection measures against differential power analysis
(DPA) both in software (see Section 7.3.4) and hardware (see Section 7.4.4).

Matryoshka structure The analysis of small versions is relevant for larger versions (see
Section 5.2).

Eggs in another basket The choice of operations is very different from that in SHA-1 and
the members of the SHA-2 family on the one hand and from AES on the other.

10 / 78

2. Design rationale summary Keccak

2.4 Choosing the parameter values

In Keccak, there are basically three security-relevant parameters that can be varied:

• b: width of Keccak-f ,

• c: capacity, limited by c < b,

• nr: number of rounds in Keccak-f .

The parameters of the candidate sponge functions have been chosen for the following reasons.

• c = 576: The value of the capacity is the smallest such that c ≥ 512 and r is a power
of two. It is chosen to be at least 512 so as to meet the required security level of the
SHA3-224 and SHA3-256 candidates. See Section 3.3.1.

• c = 1088: The value of the capacity is the smallest such that c ≥ 1024 and r is a power
of two. It is chosen to be at least 1024 so as to meet the required security level of the
SHA3-384 and SHA3-512 candidates. See Section 3.3.1.

• b = 1600: The width of the Keccak-f permutation is chosen to favor 64-bit architec-
tures while supporting both b > c = 576 and b > c = 1088 using the same implementa-
tion. See Section 3.3.2.

• nr = 18: The value of nr has been chosen to have both a good security margin and good
performances. See Section 5.4.

• r a power of two: It may be convenient in some applications to have a block size which
is a power of two, e.g., for a real-time application to align its data source (assumed to
be organized in blocks of size a power of two) to the block size without the need of an
extra buffer.

11 / 78

Keccak 2. Design rationale summary

12 / 78

Chapter 3

The sponge construction

In this chapter, we treat the implications of the use of the sponge construction on Keccak.

3.1 Security of the sponge construction

The Keccak hash function makes use of the sponge construction, as depicted in Figure 3.1.
We have introduced and analyzed this construction in [6] and proven that it is indifferentiable
from a random oracle in [8].

3.1.1 Indifferentiability from a random oracle

In [8] we have proven that given capacity c, the success probability of any generic attack is
upper bounded by 1− exp

(
−N(N + 1)2−(c+1)

)
with N the number of calls to the underlying

permutation or its inverse. If 1� N � 2c/2 this bound simplifies to 2−(c+1)N2, resulting in
a lower bound for the expected complexity of differentiating the sponge construction calling
a random permutation or transformation from a random oracle of

√
π2c/2. Note that this is

true independently of the output length. For example, finding collisions for output lengths
shorter than c has for a random sponge the same expected complexity as for a random oracle.

Figure 3.1: The sponge construction

13 / 78

Keccak 3. The sponge construction

3.1.2 Indifferentiability of multiple sponge functions

In our SHA-3 proposal we have multiple sponge functions that make use of the same f . The
indifferentiability proof of [8] actually only covers the indifferentiability of a single sponge
function instance from a random oracle. In this section we extend this proof to indifferen-
tiability from a set of random oracles of any set of sponge functions with different capacity
and/or diversifier parameters calling the same f .

Clearly, the best one can achieve is bounded by the strength of the sponge construction
instance with the smallest capacity, as an adversary can always just try to differentiate the
weakest construction from a random oracle. The next theorem states that we achieve this
bound.

Theorem 1. Differentiating an array of padded sponge constructions (Si) according to [7,
Algorithm 1] and calling the same random function (resp. permutation) f of width b with
different (ci, di) from an array of independent random oracles (ROi) has the same success
probability as differentiating a padded sponge construction with capacity mini ci calling a ran-
dom function (resp. permutation) f of width b from a random oracle.

Proof: An array (ROi) of independent random oracles can be alternatively implemented
by having a single central random oracle RO and simple algorithms Ii that pre-process the
input strings, so that ROi(M) = RO(Ii(M)). To simulate independent random oracles, each
Ii must produce a different range of output strings. In other words, the mapping from the
couple (i,M) to x = Ii(M) must be injective. This reasoning is also valid if the output of the
random oracles is processed by some algorithms Oi that extracts bits at predefined positions,
so that ROi(M) = Oi(RO(Ii(M))).

In this proof, we will do similarly for the array of padded sponge constructions, by sim-
ulating them via a single sponge construction Smin that calls the common random function
(or permutation) f . We will then rely on the indifferentiability proof in [8] for the indifferen-
tiability between Smin and RO.

For Smin, consider the padded sponge construction where the padding simply consists of
the function pad [7]. This padding satisfies the conditions imposed by the indifferentiability
proof in [8]. The capacity of Smin is chosen to be cmin = mini ci. In the proof we make use of
the bitrates ri that are fully determined by the width b of f and the capacities ci: we have
ri = b− ci and denote b− cmin by rmax.

The function Ii is built as follows. The input message M is padded with a single 1 followed
by the minimum number of zeroes such that its length becomes a multiple of 8. Then it is
followed by the binary coding of di and that of ri/8. Subsequently, if ri < rmax, the following
processing is performed. The result is split into blocks of ri bits and to each complete block
rmax − ri zeroes are appended. Note that zeroes are appended to the last block only if it is
complete, i.e., if it has length ri. Finally the blocks are concatenated together again and the
result is x = Ii(M). Due to the fact that the only allowed bitrate values are those multiple
of 8, the length of x is a multiple of 8.

The function Oi is built as follows. The output z = Oi(y) is obtained by splitting y in
rmax-bit blocks and truncating each block to ri bits.

It follows that each of the functions Si can be simulated as Si(M) = Oi(Smin(Ii(M))).
Furthermore, the mapping x = Ii(M) from a triplet (M, ri, di) to x is injective. We demon-
strate this by giving an algorithm for reconstructing (M, ri, di) from x. We start by extracting
ri from x. If the length of x is not a multiple of rmax, no zeroes were added to the last block

14 / 78

3. The sponge construction Keccak

and the binary encoding of ri/8 is in the last byte of x. Otherwise, it is in the last non-zero
byte of x. Now we split x in rmax blocks, truncate each block to its first ri bits, concatenate
them again and call the resulting string m. We can now find the binary encoding of di in the
second to last byte of m. Finally, we obtain M by removing the two last bytes from m and
subsequently removing the trailing 10∗ bit string.

Differentiating the array (Si) from the array (ROi) comes down to differentiating Smin

from RO, where Smin has capacity cmin = mini ci.
ut

Note that for the proof to work it is crucial that the inner part (i.e., the c bits unaffected
by the input or hidden from the output, see Section 3.4.1) of the sponge function instance
with the smallest capacity is inside the inner parts of all other sponge function instances.
This is realized in our sponge construction by systematically taking as inner part of the state
its last c bits.

So if several sponge construction instances are considered together, only the smallest
capacity counts. When considering a sponge construction instance, one may wonder whether
the mere existence of a sponge function instance with a smaller capacity has an impact on
the security of that sponge construction. This is naturally not the case, as an adversary has
access to f and can simulate any construction imaginable on top of f . What matters is that
the value N used in the expression for the workload shall include all calls to f and f−1 of
which results are used.

3.1.3 Immunity to generic attacks

The indifferentiability result gives us a provable upper bound for the success probability,
and hence a provable lower bound for the expected workload of any generic attack. More
particularly, for a sponge construction with given c there can be no generic attacks with
expected workload below

√
π2c/2.

In the last few years a number of generic attacks against iterated hash functions have been
published that demonstrated unexpected weaknesses:

• multicollisions [30],

• second preimages on n-bit hash functions for much less than 2n work [32],

• herding hash functions and the Nostradamus attack [38].

Clearly these attacks are covered by the indifferentiability proof and for a sponge function
the workload of generic versions of these attacks cannot be below

√
π2c/2. As a matter of

fact, all these attacks imply the generation of inner collisions and hence they pose no threat if
generating inner collisions is difficult. We will discuss non-generic methods for the generation
of inner collisions applicable to Keccak in Section 4.3.

3.1.4 Randomized hashing

Interesting in this context is the application of randomized hashing [43]. Here a signing
device randomizes the message prior to hashing with a random value that is unpredictable
by the adversary. This increases the expected workload of generating a signature that is
valid for two different messages from generating two colliding messages to that of generating
a second pre-image for a message already signed. Now, if we keep in mind that for the

15 / 78

Keccak 3. The sponge construction

sponge construction there are no generic attacks with expected workload of order below 2c/2,
we can conclude the following. A lower bound for the expected complexity for generating
a collision is min(2n/2, 2c/2) and for generating a second preimage min(2n, 2c/2). Hence, if
c > 2n, randomization increases the strength against signature forgery due to generic attacks
against the hash function from 2n/2 to 2n. If the capacity is between n and 2n, the increase
is from 2n/2 to 2c/2. If c < n, randomized hashing does not significantly increase the security
level.

3.1.5 Keyed modes

With a random oracle, one can construct a pseudo-random function (PRF) Fk(m) by prepend-
ing the message m with a key k, i.e., Fk(m) = RO(k||m). In such a case, the function behaves
as a random function to anyone not knowing the key k but having access to the same random
oracle. Note that the same reasoning is valid if k is appended to the message.

More specifically, let us consider the following differentiating experiment. In a first world,
let the adversary have access to the PRF Fk(m) = RO1(k||m) and to the random oracle
instance RO1 used by the PRF. In a second world, the adversary has access to two indepen-
dent random oracle instances RO2 and RO3. The adversary has to differentiate the couple
(Fk,RO1) from the couple (RO2,RO3). The only statistical difference between the two pairs
comes from the identity between Fk(m) and RO1(k||m), whereas RO2(m) and RO3(k||m)
give independent results. Therefore, being able to detect such statistical difference means that
the key k has been recovered. For a key k containing n independent and uniform random
bits, the workload to generically recover it is about 2n−1.

As a consequence of the indifferentiability result, the same construction can be used with
a sponge function and the same security can be expected when the adversary does not have
access to a complexity of order higher than 2c/2.

Note that two options are possible, namely, prepending or appending the key. Prepending
the key prevents the adversary from performing offline computations without access to Fk. If
the key is appended, the adversary can for instance generate a state collision (see Section 3.4.1)
before querying Fk. The difference between the two options does not make a difference below
the 2c/2 complexity order bound, though.

3.2 Rationale for the padding

The padding we apply has three purposes:

• sponge input preparation,

• multi-capacity property,

• digest-length dependent digest.

We explain these three purposes in the following subsections.

3.2.1 Sponge input preparation

The padding converts the input string M in an injective way into a string P that satisfies the
requirements for the input to an unpadded sponge [6, 8]: the length is a non-zero multiple of
r and the last block is different from 0r. This way, the indifferentiability proof is applicable.

16 / 78

3. The sponge construction Keccak

3.2.2 Multi-capacity property

In the padding the value of the bitrate divided by 8 is binary coded and appended to the
message. This allows to apply the sponge construction to the same permutation with different
capacity values. Using this padding, the fact that the same f is used for different capacities
does not jeopardize the security of the sponge construction. We have proven in Section 3.1.2
that given a random permutation (or transformation) f , for any set of allowed capacity values
{c1, c2, . . .}, differentiating the resulting set of sponge functions from a set of random oracles
is not easier than differentiating the sponge function with capacity mini ci from a random
oracle. We have limited the allowed bitrate values to multiples of 8 to limit splitting of input
strings at byte boundaries. Note that this does not impose restrictions on possible input and
output lengths.

3.2.3 Digest-length dependent digest

One may have the requirement that a hash function with the same input but requesting a
different number of output bits shall behave as different hash functions. More particularly,
the SHA-3 requirements specify a range of fixed digest lengths while our Keccak sponge
functions in principle have an output with arbitrary length. To achieve this we set the value
of the diversifier d to the digest length expressed in bytes. We have proven in Section 3.1.2 that
given a random permutation (or transformation) f , for any set of diversifier values {d1, d2, . . .}
and given the capacity c, differentiating the resulting set of sponge functions from a set of
random oracles is not easier than differentiating a single sponge function with capacity c from
a random oracle.

3.3 Parameter choices

3.3.1 Capacity

In fixed digest-length hash functions, the required resistance against attacks is expressed
relative to the digest length. Until recently one has always expected a hash function to be
as strong as a random oracle with respect to the classical attacks: collisions and (second)
preimage. This changed after the publication of the generic attacks listed in Section 3.1.3.

For variable output-length hash functions expressing the required resistance with respect
to the output length makes little sense as this would imply that it should be possible to
increase the security level indefinitely by just taking longer digests. In our papers [6, 8], we
have shown that for iterated variable output-length hash functions it is natural to express
the resistance against attacks with respect to a single parameter called the capacity. Given a
flat sponge claim with a specific capacity c, the claim implies that with respect to any attack
with expected complexity below

√
π2c/2 the hash function is as strong as a random oracle.

Choosing c ≥ 512 for SHA3-256 (and SHA3-224) makes the sponge construction as strong
as a random oracle since c ≥ 2n. This strictly complies with the security requirements as
specified in [43].

Choosing c ≥ 1024 for SHA3-512 (and SHA3-384) follows the same reasoning. This strictly
complies with the security requirements as specified in [43]. In particular, c ≥ 1024 is needed
by the requirement that (second) preimage resistance should be at least 2512. Note that a
capacity of c ≥ 512 would otherwise be sufficient, especially if it is to be used in applications

17 / 78

Keccak 3. The sponge construction

that require the same security level as AES-256, i.e., in the worst case, the expected workload
of an attack should be 2256. Also, requiring a resistance of 2256 is by itself already quite
strong, as according to thermodynamics the energy needed by an irreversible computer to
perform that many operations is unreachable [52, pages 157–158].

3.3.2 Width

The width b of the permutation has been chosen as a trade-off between bitrate and memory
footprint.

In a straightforward implementation, the RAM footprint is limited to the state and some
working memory. For the 1600-bit version, is still limited to slightly above 200 bytes. More-
over, it allows to have a bitrate of 1024 bit and still have a high capacity.

Keccak-f is oriented towards 64-bit CPUs. In applications that are expected to run
mainly on 32-bit CPUs, one may consider using Keccak-f [800] in Keccak[r = 256, c = 544]
or Keccak[r = 512, c = 288]. The former has a small bitrate, hence impacting its perfor-
mance. The latter is twice as fast and has a claimed security level of 2144 with respect to
all shortcut attacks. Note that this is higher than the collision resistance claimed today for
SHA-224 and SHA-256.

The smallest value of b for which a reasonable level of security can be obtained is b = 200.
In our opinion the value of c below which attacks become practical is somewhere between 110
and 140, depending on the resources of the adversary.

3.3.3 The default sponge function Keccak[]

One may ask the question: if we can construct arbitrary output-length hash functions, why
not just have a single function and truncate at required length instead of trying to have a
different hash function per supported output length? This is why we propose Keccak[] as a
fifth candidate. As said, it has a capacity of 576 bits, a bitrate of 1024 bits and its diversifier
is fixed to 0. The capacity and bitrate sum up to 1600, the width of the Keccak-f variant
with lane length of 64 bits, the dominant word length in modern CPUs. For the bitrate we
have chosen the largest power of 2 such that the capacity is not smaller than 512 bits. Note
that the capacity of 576 bits precludes any generic attacks with expected workload below the
(astronomical) number 2288.

The default value of the diversifier is 0 as we believe differentiation between versions
with different output lengths is in general not a requirement. Still, we are aware that there
may be schemes in which different hash (or sponge) functions are used that must behave
as different functions, possibly even if they have equal output length. In the latter case,
setting the diversifier to the output length does not solve the issue. However, in such a case,
the requirement that the different instances behave as different functions can be satisfied
by appending different constants to the input for each of the function instances: fi(M) =
Keccak[](M ||Ci). Note that for an appropriate set of constants Ci, Theorem 1 can be
extended to this mode of use.

3.4 The four critical operations of a sponge

In this section we consider four critical operations that generic attacks on a sponge functions
seem to imply.

18 / 78

3. The sponge construction Keccak

3.4.1 Definitions

We call the last c bits of a state S the inner part and we denote it by Ŝ.
In the sequel, we make use of the Sf [] function. For a given input string P (after padding),

Sf [P] denotes the value of the state obtained after absorbing P . If s = Sf [P], we call P a
path to state s (under f). Similarly, if ŝ = Ŝf [P] we call P a path to the inner state ŝ. The
Sf [] function is defined by the following recursion:

Sf [empty string] =0r||0c,
Sf [P ||a] =f (Sf [P]⊕ (a||0c)) for any string P of length multiple of r

and any r-bit block a .

In general, the j-th r-bit block of the output is

zj = Sf [P ||0jr], j ≥ 0.

The Sf [] function can be used to express the states that the sponge traverses both as it
absorbs an input P and as it is being squeezed. The traversed states are Sf [P ′] for any P ′

prefix of P |0∞ with |P ′| = kr, including the empty string.

Definition 2. A state collision is a pair of different paths P 6= Q to the same state: Sf [P] =
Sf [Q].

Definition 3. An inner collision is a pair of two different paths P 6= Q to the same inner
state: Ŝf [P] = Ŝf [Q].

Clearly, a state collision on P 6= Q implies an inner collision on P 6= Q. The converse is not
true. However, in the absorbing phase it is very easy to produce a state collision from an inner
collision. Given P 6= Q such that Ŝf [P] = Ŝf [Q], the pair P ||a and Q||(a⊕bSf [P]⊕ Sf [Q]cr)
forms a state collision for any r-block a.

3.4.2 The operations

The four critical operations are:

• finding an inner collision;

• finding a path to a given inner state;

• finding a cycle in the output: finding an input string P and an integer d > 0 such that
Sf [P] = Sf [P ||0dr];

• binding an output string to a state: given a string z with length |z|, finding a state
value s such that the sponge generates z as output. Here we can distinguish two cases:

– Short output string (z ≤ b): the number of possible output strings z is below the
number of possible states. It is likely that an inner state value can be found, and
the expected number of solutions is ≈ 2b−z.

– Long output string (z > b): the number of possible output strings z is above the
number of possible states. For a randomly chosen z, the probability that a state
value may be found is 2b−z. If one is found, it is likely that the inner state value
is unique.

19 / 78

Keccak 3. The sponge construction

As explained in [6], the classical attacks can be executed as a combination of these operations.
In [6] we have discussed generic approaches to these four operations and the corresponding
success probabilities.

The optimum algorithm to find an inner collision is to build a rooted tree [6] until a collision
is found. The success probability of this algorithm coincides with the success probability of
differentiating the sponge construction calling a random permutation or transformation from
a random oracle.

The optimum algorithm to find a path to an inner state for a permutation is to build
two trees: a rooted tree and a tree ending in the final inner state. The path is found when
a new node in one of the trees is also a node in the other tree. The success probability of
this probability is slightly below that of generating an inner collision. For a transformation
the tree ending in the final inner state cannot be built and the success probability is much
lower. However, the difference between a permutation and an transformation in this respect
is above the claimed security.

For a discussion on how to find a cycle or bind an output string to a state, we refer to [6].

20 / 78

Chapter 4

Sponge functions with an iterated
permutation

The purpose of this chapter is to discuss a number of properties of an iterated permutation
that are particularly relevant when being used in a sponge construction.

4.1 The philosophy

4.1.1 There should be no better attacks than generic attacks

For our Keccak functions we make a flat sponge claim with the same capacity used in
the sponge construction. This implies that for the claim to stand, the underlying function
(permutation or transformation) must be constructed such that it does not allow mounting
shortcut attacks that have a higher success probability than generic attacks for the same
workload.

Thanks to the indifferentiability proof a shortcut attack on a concrete sponge function
implies a distinguisher for the function (permutation or transformation) it calls. However, a
distinguisher for that function does not necessarily imply an exploitable weakness in a sponge
function calling it.

4.1.2 The impossibility of implementing a random oracle

Informally, a distinguisher for a function (permutation or transformation) is the demonstra-
tion of any property that sets it significantly apart from a randomly chosen function (per-
mutation or transformation). Unfortunately, it is impossible to construct such a function
that is efficient and has a reasonably sized description (or code). It is not hard to see why:
any practical b-bit transformation (permutation) has a compact description and implemen-
tation not shared by a randomly chosen transformation (or permutation) with its b2b (or
log2 2b! ≈ (b− 1)2b) bits of entropy.

This is better known as the random oracle implementation impossibility and a formal
proof for it was first given in [11] and later an alternative proof was given in [41]. In their
proofs, the authors construct a signature scheme that is secure when calling a random oracle
but is insecure when calling a function f taking the place of the random oracle, where the
function f has a limited (polynomial) running time and can be expressed as a Turing pro-
gram of limited size. This argument is valid for any cryptographic function, and so includes

21 / 78

Keccak 4. Sponge functions with an iterated permutation

Keccak-f . Now, looking more closely at the signature schemes used in [11] and [41], it turns
out that they are especially designed to fail in the case of a concrete function. We find it
hard to see how this property in a protocol designed to be robust may lead to its collapse of
security. The proofs certainly have their importance in the more philosophical approach to
cryptography, but we don’t believe they prevent the design of cryptographic primitives that
provide excellent security in well-engineered examples. Therefore, we address the random
oracle implementation impossibility by just making an exception in our security claim.

4.1.3 The choice between a permutation and a transformation

As can be read in [6], the expected workload of the best generic attack for finding a second
preimage of a message of length |m| when using a transformation is of the order 2c/|m|. When
using a permutation this is only of order 2c/2. In that respect, a transformation has preference
over a permutation. This argument makes sense when developing a hash function dedicated
to offering resistance against second preimage attacks. Indeed, using a transformation allows
going for a smaller value of c providing the same level of security against generic attacks.

When developing a general-purpose hash function however, the choice of c is governed by
the security level against the most powerful attack the function must resist, namely collision
attacks. The resistance against output collisions that a sponge function can offer is determined
by their resistance against generating inner collisions. For high values of r, the resistance
against generating inner collisions is the same for a transformation or a permutation and of
the order 2c/2.

4.1.4 The choice of an iterated permutation

Clearly, using a random transformation instead of a random permutation does not offer less
resistance against the four critical operations, with the exception of detecting cycles [6] and the
latter is only relevant if very long outputs are generated. Hence, why choose for a permutation
rather than a transformation?

We believe a suitable permutation can be constructed as a fixed-key block cipher: as a
sequence of simple and similar rounds. A suitable transformation can also be constructed as
a block cipher, but here the input of the transformation would correspond with the key input
of the block cipher. This would involve the definition of a key schedule and in our opinion
results in less computational and memory usage efficiency and a more difficult analysis.

Our Keccak functions apply the sponge construction to iterated permutations that are
designed in the same way as modern block ciphers: iterate a simple nonlinear round func-
tion enough times until the resulting permutation has no properties that can be exploited in
attacks. The remainder of this chapter deals with such properties and attacks. First, as an
iterated permutation can be seen a block cipher with a fixed and known key, it should be
impossible to construct for the full-round versions distinguishers like the known-key distin-
guishers for reduced-round versions of DES and AES given in [36]. This includes differentials
with high differential probability (DP), high input-output correlations, distinguishers based
on integral cryptanalysis or deviations in algebraic expressions of the output in terms of the
input. We call this kind of distinguishers structural, to set them apart from trivial distinguish-
ers that are of no use in attacks such as checking that f(a) = b for some known input-output
couple (a, b) or the observation that f has a compact description.

In the remainder of this chapter we will discuss some important structural distinguishers

22 / 78

4. Sponge functions with an iterated permutation Keccak

for iterated permutations, identify the properties that are relevant in the critical sponge
operations and finally those for providing resistance to the classical hash function attacks.

4.2 Some structural distinguishers

In this section we discuss structural ways to distinguish an iterated permutation from a
random permutation: differentials with high differential probability (DP), high input-output
correlation, non-random properties in the algebraic expressions of the input in terms of the
output (or vice versa) and the difficulty of solving a particular problem: the constrained-input
constrained-output problem.

4.2.1 Differential cryptanalysis

A (XOR) differential over a function α consists of an input difference pattern a′ and an output
difference pattern b′ and is denoted by a couple (a′, b′). A right pair of a differential is a pair
{a, a⊕a′} such that α(a⊕a′)⊕α(a) = b′. In general, one can define differentials and (ordered)
pairs for any Abelian group operation of the domain and codomain of α. A right (ordered)
pair is then defined as {a+ a′, a} such that α(a+ a′) = α(a)� b′, where + corresponds to the
group operation of the domain of α and � of its codomain. In the following we will however
assume that both group operations are the bitwise XOR, or equivalently, addition in Zb2.

The cardinality of (a′, b′) is the number of right pairs and its differential probability (DP)
is the cardinality divided by the total number of pairs with given input difference. We define
the weight of a differential w(a′, b′) as minus the binary logarithm of its DP, hence we have
DP(a′, b′) = 2−w(a′,b′). The set of values a with a a member of a right pair of a differential
(a′, b′) can be expressed by a number of conditions on the bits of a. Hence a differential
imposes a number of conditions on the absolute value at its input. In many cases these
conditions can be expressed as w(a′, b′) independent binary equations.

It is well known (see, e.g., [24]) that the cardinality of non-trivial (i.e., with a′ 6= 0 6= b′)
differentials in a random permutation operating on Zn2 with n not very small has a Poisson
distribution with λ = 1/2 [24]. Hence the cardinality of non-trivial differentials of an iterated
permutation used in a sponge construction shall obey this distribution.

Let us now have a look at how differentials over iterated mappings are constructed. A
differential trail Q over an iterated mapping f of nr rounds Ri consists of a sequence of nr + 1
difference patterns (q0, q1, . . . , qn). Now let fi = Ri−1◦Ri−2◦ . . .R0, i.e., fi consists of the first
i rounds of α. A right pair of a trail is a couple {a, a⊕ a′0} such that for all i with 0 < i ≤ nr:

fi(a⊕ q0)⊕ fi(a) = qi .

Note that a trail can be considered as a sequence of nr round differentials (qi−1, qi) over each
Ri. The cardinality of a trail is the number of right pairs and its DP is the cardinality divided
by the total number of pairs with given input difference. We define the weight of a trail w(Q)
as the sum of the weights of its round differentials.

The cardinality of a differential (a′, b′) over f is the sum of the cardinalities of all trails Q
within that differential, i.e., with q0 = a′ and qnr = b′. From this, the condition on the values
of the cardinality of differentials of f implies that there shall be no trails with high cardinality
and there shall not be differentials containing many trails with non-zero cardinality.

Let us take a look at the cardinality of trails. First of all, note that DP(Q) = 2−w(Q)

is not necessarily true, although in many cases it may be a good approximation, e.g., when

23 / 78

Keccak 4. Sponge functions with an iterated permutation

w(Q) < b − 4. The cardinality of the trail is then given by 2b−1 × DP(Q). Now, when
w(Q) > b−1 this can no longer be the case, as the number of pairs is an integer. Typically, a
trail with w(Q) > b− 1 has no pairs, maybe one pair and very maybe a few pairs. If all trails
over an iterated permutation have weight significantly above b, most pairs will be in a trail
that has only 1 right pair. In other words, trails with more than a single right pair will be
rare. In those circumstances, finding a trail with non-zero cardinality is practically equivalent
to finding a right pair for it. This makes such trails of very small value in cryptanalysis.

It remains to be verified that there are no systematic clustering of non-zero cardinality
trails in differentials. A similar phenomenon is that of truncated differentials. These are
differentials where the input and output difference patterns are not fully determined. A first
type of truncated differentials are especially a concern in ciphers where the round function
treats the state bits in sets, e.g., bytes. In that case, a typical truncated differential only
specifies which bytes in the input and/or output difference patterns are passive (equal to
zero) and which ones are active (different from zero). The central point of these truncated
differentials is that they also consist of truncated trails and that it may be possible to construct
truncated trails with high cardinality. Similar to ordinary differential trails, truncated trails
also impose conditions on the bits of the intermediate computation values of a, and the
number of such conditions can again be quantified by defining a weight function.

A second type of truncated differentials are those where part of the output is truncated.
Instead of considering the output difference pattern over the complete output of f , one con-
siders it over a subset of (say, n of) its output bits (e.g., the inner part f̂). For a random
b-bit to n-bit function, the cardinality of non-trivial differentials has a normal distribution
with mean 2b−n−1 and variance 2b−n−1 [24]. Again, this implies that there shall be no trails
of the truncated function f with low weight and there shall be no clustering of trails.

Given a trail for f , one can construct a corresponding trail for the truncated version of
f . This requires exploiting the properties of the round function of f . In general, the trail
for the truncated version will have a weight that is equal to or lower than the original trail.
How much lower depends on the round function of f . Typically, the trail in f determines
the full difference patterns up to the last few rounds. In the last few rounds the difference
values in some bit positions may become unconstrained resulting in a decrease of the number
of conditions.

4.2.2 Linear cryptanalysis

A (XOR) correlation over a function α consists of an input selection pattern v and an output
selection pattern u and is denoted by a couple (v, u). It has a correlation value denoted
by C(v, u) equal to the correlation between the Boolean functions vTa and uTα(a). This
correlation is a real number in the interval [−1, 1]. We define the weight of a correlation by:

w(v, u) = − log2(C2(v, u))/2 .

In general, one can define correlations for any Abelian group operation of the domain and
codomain of α, where C(v, u) is a complex number in the closed unit disk [2]. In the following
we will however assume that both group operations are the bitwise XOR, or equivalently,
addition in Zb2. We only give an introduction here, for more background, we refer to [18].

Correlations in a permutation operating on Zb2 are integer multiples of 22−b. The distribu-
tion of non-trivial correlations (i.e., with u 6= 0 6= v) in a random permutation operating on
Zb2 with b not very small has as envelope a normal distribution with mean 0 and variance 2−b

24 / 78

4. Sponge functions with an iterated permutation Keccak

[24]. Hence non-trivial correlations of an iterated permutation used in a sponge construction
shall obey this distribution.

Let us now have a look at how correlations over iterated mappings can be decomposed
into linear trails. A linear trail Q over an iterated mapping f of nr rounds Ri consists of a
sequence of nr + 1 selection patterns (q0, q1, . . . , qnr). A linear trail can be considered as a
sequence of nr round correlations (qi, qi+1) over each Ri and its correlation contribution C(Q)
consists of the product of the correlations of its round correlations: C(Q) =

∏
iC(qi, qi+1).

It follows that C(Q) is a real number in the interval [−1, 1]. We define the weight of a linear
trail by

w(Q) = − log2(C2(Q))/2 =
∑
i

w(qi, qi+1) .

A correlation C(v, u) over f is now given by the sum of the correlation contributions of all
linear trails Q within that correlation, i.e., with q0 = v and qnr = u. From this, the condition
on the values of the correlations of f implies that there shall be no trails with high correlation
contribution (so low weight) and there shall not be correlations containing many trails with
high correlation contributions.

4.2.3 Algebraic expressions

In this section we discuss the algebraic normal form (ANF) considered over GF(2). In a
mapping operating on b bits, one may define a grouping of bits in d-bit blocks for any d
dividing b and consider the ANF over GF(2d). The derivations are very similar, the only
difference is that the coefficients are in GF(2d) rather than GF(2) and that the maximum
degree of individual variables is 2d − 1 rather than 1.

Let g : GF(2)b → GF(2) be a mapping from b input bits to one output bit. The ANF is
the polynomial

g(x0, . . . , xb−1) =
∑

e∈GF(2)b

G(e)xe, with xe =
b−1∏
i=0

xei
i and G(e) ∈ GF(2).

Given the truth table of g(x), one can compute the ANF of g with complexity of O(b2b)
as in Algorithm 1.

Algorithm 1 Computation of the ANF of g(x)
Input g(x) for all x ∈ GF(2)b

Output G(e) for all e ∈ GF(2)b

Define G[t] = G(e), for t ∈ N, when t =
∑

i ei2
i

Start with G(e)← g(e) for all e ∈ GF(2)b

for i = 0 to b− 1 do
for j = 0 to 2b−i−1 − 1 do

for k = 0 to 2i − 1 do
G[2i+1j + 2i + k]← G[2i+1j + 2i + k] +G[2i+1j + k]

end for
end for

end for

25 / 78

Keccak 4. Sponge functions with an iterated permutation

When g is a (uniformly-chosen) random function, each monomial xe is present with prob-
ability one half, or equivalently, G(e) behaves as a uniform random variable over {0, 1} [25].
A transformation f : GF(2)b → GF(2)b can be seen as a tuple of b binary functions f = (fi).
For a (uniformly-chosen) random transformation, each Fi(e) behaves as a uniform and inde-
pendent random variable over {0, 1}.

If f is a random permutation over b bits, each Fi(e) is not necessarily an independent
uniform variable. For instance, the monomial of maximal degree x0x1 . . . xb−1 cannot appear
since the bits of a permutation are balanced when x is varied over the whole range GF(2)b.

If b is small, the ANF of the permutation f can be computed explicitly by varying the
b bits of input and applying Algorithm 1. A statistical test on the ANF of the output bit
functions is performed and if an abnormal deviation is found, the permutation f can be
distinguished from a random permutation. Examples of statistical tests on the ANF can be
found in [25].

If b is large, only a fraction of the input bits can be varied, the others being set to some
fixed value. All the output bits can be statistically tested, though. This can be seen as a
sampling from the actual, full b-bit, ANF. For instance, let f̃ be obtained by varying only the
first n < b inputs of f and fixing the others to zero:

f̃(x0, . . . , xn−1) = f(x0, . . . , xn−1, 0, . . . , 0).

Then, it is easy to see that any monomial xe in the ANF of f̃ also appears in the ANF of f ,
and vice-versa, whenever i ≥ n⇒ ei = 0.

4.2.4 The constrained-input constrained-output (CICO) problem

In this section we define and discuss a problem related to f whose difficulty is crucial if it
is used in a sponge construction: the constrained-input constrained-output (CICO) problem.
Let:

• X ⊆ Zb2: a set of possible inputs.

• Y ⊆ Zb2: a set of possible outputs.

Solving the CICO problem consists in finding a couple (x, y) with y = f(x), x ∈ X and y ∈ Y.
The sets X and Y can be expressed by a number of equations in the bits of x and y

respectively. In the simplest variant, the value of a subset of the bits of x (or y) are fixed. A
similarly simple case is when they are determined by a set of linear conditions on the bits of
x (or y).

We define the weight of X as

w(X) = b− log2 |X |,

and w(Y) likewise. When the conditions y = f(x) , x ∈ X and y ∈ Y are considered as
independent, the expected number of solutions is 2b−(w(X)+w(Y)). Note that there may be no
solutions, and this is even likely if w(X) + w(Y) > b.

The expected workload of solving a CICO problem depends on b, w(X) and w(Y) but also
on the nature of the constraints and the nature of f . If we make abstraction of the difficulty of
finding members of X or Y, generic attacks impose upper bounds to the expected complexity
of solving the CICO problem:

26 / 78

4. Sponge functions with an iterated permutation Keccak

• If finding x values in X is easy,

– Trying values x ∈ X until one is found with f(x) ∈ Y is expected to take 2w(Y)

calls to f .

– Trying all values x ∈ X takes 2b−w(X) calls to f . If there is a solution, it will be
found.

• If finding y values in Y is easy,

– Trying values y ∈ Y until one is found with f−1(y) ∈ X is expected to take 2w(X)

calls to f−1.

– Trying all values y ∈ Y takes 2b−w(Y) calls to f−1. If there is a solution, it will be
found.

When w(X) or w(Y) is small or close to b, this problem may be generically easy, provided
there is a solution.

In many cases, a CICO problem can be easily expressed as a set of algebraic equations in
a set of unknowns and one may apply algebraic techniques for solving these equations such
as Gröbner bases [17].

4.2.5 Multi-block CICO problems

The CICO problem can be extended from a single iteration of f to multiple iterations in a
natural way. We distinguish two cases: one for the absorbing phase and another one for the
squeezing phase.

An e-block absorbing CICO problem for a function f is defined by two sets X and Y and
consists of finding a solution (x0, x1, x2, . . . xe) such that

x0 ∈ X ,
xe ∈ Y ,

for 0 < i < e : x̂i = 0c ,
y1 = f(x0) ,

for 1 < i < e : yi = f(yi−1 ⊕ xi−1) ,
xe = f(ye−1 ⊕ xe−1) .

A priori, this problem is expected to have solutions if w(X) + w(X) ≤ c+ er.
An e-block squeezing CICO problem for a function f is defined by e+ 1 sets X0 to Xe and

consists of finding a solution x0 such that:

for 0 ≤ i ≤ e : xi ∈ Xi ,
for 0 < i ≤ e : xi = f(xi−1) .

A priori, this problem is expected to have solutions if
∑

i w(Xi) < b. If it is known that there
is a solution, it is likely that this solution is unique if

∑
i w(Xi) > b.

Note that if e = 1 both problems reduce to the simple CICO problem.

27 / 78

Keccak 4. Sponge functions with an iterated permutation

4.2.6 Cycle structure

Consider the infinite sequence a, f(a), f(f(a)), ... with f a permutation over a finite domain
and a an element of that set. This sequence is periodic and the set of different elements in
this sequence is called a cycle of f . In this way, a permutation partitions its domain into a
number of cycles.

Statistics of random permutations have been well studied, see [59] for an introduction and
references. The cycle partition of a permutation used in a sponge construction shall again
respect the distributions. For example, in a random permutation over Zb2:

• The expected number of cycles is b ln 2.

• The expected number of fixed points (cycles of length 1) is 1.

• The number of cycles of length at most m is about lnm.

• The expected length of the longest cycle is aboutG×2b, whereG is the Golomb-Dickman
constant (G ≈ 0.624).

4.3 Inner collision

Assume we want to generate an inner collision with two single-block inputs. This requires
finding states a and a∗ such that

f̂(a)⊕ f̂(a∗) = 0c with â = â∗ = 0c .

This can be rephrased as finding a right pair {a, a∗} with â = â∗ = 0c for the differential
(a ⊕ a∗, 0c) of f̂ . Requiring â = â∗ = 0c is needed to obtain valid paths from the root state
to iteration of f where the differential occurs. In general, it is required to know a path
to the inner state â = â∗ = Ŝf [P]; the case â = â∗ = 0c is just a special case of that as
0c = ̂Sf [empty string].

4.3.1 Exploiting a differential trail

Assume f is an iterated function and we have a trail Q in f̂ with initial difference a′ and
final difference b′ such that â′ = b̂′ = 0c. This implies that for a right pair (a, a∗) of this trail,
the intermediate values of a satisfy w(Q) conditions. If w(Q) is smaller than b, the expected
number of pairs of such a trail is 2b−w. Let us now assume that given a trail and the value
of â, it is easy to find right pairs {a, a⊕ a′} with given â. We consider two cases:

• w(Q) < r: it is likely that right pairs exist with â = 0c and an inner collision can be
found readily. The paths are made of the first r bits of the members of the found pair,
a 6= a∗.

• w(Q) ≥ r: the probability that a right pair exists with â = 0c is 2r−w(Q).

If several trails are available, one can extend this attack by trying it for different trails
until a right pair with â = 0c is found. If the weight of trails over f is lower bounded by wmin,
the expected workload of this method is higher than 2wmin−r. With this method, differential
trails do not lead to a shortcut attack if wmin > c/2 + r = b− c/2.

28 / 78

4. Sponge functions with an iterated permutation Keccak

One can extend this attack by allowing more than a single block in the input. In a first
variant, an initial block in the input is used to vary the inner part of the state and are equal
for both members of the pair that will be found. Given a trail in the second block, the
problem is now to find an initial block that, once absorbed, leads to an inner state at the
input of the trail, for which trail in the second block has a right pair. In other words, that
leads to an inner state that satisfies a number of equations due to the trail in the second
block. The equations in the second block define a set Y for the output of the first block with
w(Y) ≈ w(Q)− r: the conditions imposed by the trail in the second block on the inner part
of the state at its input. Moreover, the fact that the inner part of the input to f in the first
iteration is fixed to zero defines a set X with w(X) = c. Hence, even if finding a right pair for
the trail can be found, a CICO problem must be solved with w(X) = c and w(Y) ≈ w(Q)− r
for determining the first block of the inputs.

Note that if there are no trails with weight below b, the expected number of right pairs
per trail is smaller than 1 and trails with more than a single right pair will be rare. In this
case, even if a trail with a right pair can be found, the generation of an inner collision implies
solving a CICO problem for the first block with w(X) = w(Y) = c.

One can input pairs that consist of multiple input blocks where there is a difference in
more than a single input block. Here, chained trails may be exploited in subsequent iterations
of f . However, even assuming that the transfer of equations through f due to a trail and
conditions at the output is easy, one ends up in the same situation with a number of conditions
on the bits of the inner part of the state at the beginning of the first input differential. And
again, if there are no trails with weight below b, the generation of an inner collision implies
solving a CICO problem with w(X) = w(Y) = c.

If c > b/2, typically a CICO problem with w(X) = w(Y) = c will have no solution. In
that case one must consider multiple blocks and the problem to solve becomes a multi-block
absorbing CICO problem. The required number of rounds e for there to be a solution is dc/re.

4.3.2 Exploiting a differential

In the search for inner collisions, all right pairs (a, a⊕ a′) with â = 0c of a differential (a′, 0c)
with â′ = 0c over f̂ are useful, and not only the pairs of a single trail. So it seems like a good
idea to consider differentials instead of trails. However, where for a given trail it may be easy
to determine the pairs that follow it, this is not true in general for a differential. Still, an
f̂ -differential may give an advantage with respect to a trail if it contains more than a single
trail with low weight. On the other hand, the conditions to be right pairs of one of a set of
trails tend to become more complicated as the number of trails grows. This makes algebraic
manipulation more and more difficult as the number of trails to consider grows.

If there are no trails over f̂ with weight below b, the set of right pairs of a differential
is expected to be a set that has no simple algebraic characterization and we expect the
most efficient way to determine right pairs is to try different outputs of f with the required
difference and computing the corresponding inputs.

4.3.3 Truncated trails and differentials

As for ordinary differential trails, the conditions imposed by a truncated trail can be trans-
ferred to the input and for finding a collision a CICO problem needs to be solved. Here the
factor w(Y) is determined by the weight of the truncated trail. Similarly, truncated trails can

29 / 78

Keccak 4. Sponge functions with an iterated permutation

be combined to truncated differentials and here the same difficulties can be expected as when
combining ordinary trails

4.4 Path to an inner state

If c ≥ b/2, this is simply a CICO problem with w(X) = w(Y) = c and solving it results in
a single-block path to an inner state. If c < b/2, an e-block path to the inner state can be
found by solving a multi-block absorbing CICO problem with e = dr/ce.

4.5 Detecting a cycle

This is strongly linked to the cycle structure of f . If f is assumed to behave as a random
permutation, the overwhelming majority of states will generate very long cycles. Short cycles
do exist, but due to the sheer number of states, the probability that this will be observed is
extremely low.

4.6 Binding an output to a state

We consider here only the case where the output must fully determine the state. If the capacity
is smaller than the bitrate, it is highly probable that a sequence of two output blocks fully
determines the inner state. In that case, finding the inner state is a CICO problem with
w(X) = w(Y) = r.

If the capacity is larger than the bitrate, one needs more than two output blocks to
uniquely determine the inner state. Finding the state consists in solving a multi-block squeez-
ing CICO problem with w(Xi) = r. The required number of rounds e to uniquely determine
the state is db/re.

4.7 Classical hash function criteria

In this section we discuss the properties of an iterated permutation that are relevant in the
classical hash function criteria.

4.7.1 Collision resistance

We assume that the sponge function output is truncated to its first n bits and we try to
generate two outputs that are the same for two different inputs. We can distinguish two
ways to achieve this: with or without an inner collision. While the effort for generating an
inner collision is independent of the length of the output to consider, this is not the case in
general for generating output collisions. If n is smaller than the capacity, the generic attack
to generate an output collision directly has a smaller workload than generating an inner
collision. Otherwise, generating an inner collision and using this to construct a state collision
is expected to be more efficient.

We refer to Section 4.3 for a treatment on inner collisions. With some small adaptations,
that explanation also applies to the case of directly generating output collisions. The only
difference is that for the last iteration of the trail, instead of considering differentials (a′, 0c)
over f̂ , one needs to consider differentials (a′, 0n) over bfcn. When exploiting a trail, and in

30 / 78

4. Sponge functions with an iterated permutation Keccak

the absence of high-probability trails, this reduces to solving a CICO problem with w(X) =
w(Y) = c to find a suitable first block.

4.7.2 Preimage resistance

We distinguish three cases:

• n > b: in this case the output fully determines the state just prior to squeezing. Gener-
ating a preimage implies binding a state to an output and subsequently finding a path
to that state. As explained in Sections 4.4 and 4.6, this comes down to solving two
CICO problems.

• r < n ≤ b: Here a sequence of input block can in theory be found by solving a problem
that can be seen as a combination of a multi-round squeezing CICO problem and a
multi-round absorbing CICO problem.

• n ≤ r: A single-block preimage can be found by solving a single-block CICO problem
with w(X) = c and w(Y) = n.

4.7.3 Second preimage resistance

There are two possible strategies for producing a second preimage. In a first strategy, the
adversary can try to find a second path to one of the inner states traversed when absorbing
the first message. Finding a second preimage then reduces to finding a path to a given inner
state [6], which is discussed in Section 4.4. As a by-product, this strategy exhibits an inner
collision.

In a second strategy, the adversary can ignore the inner states traversed when absorbing
the first message and instead take into account only the given output. In this case, the first
preimage is of no use and the problem is equivalent to finding a (first) preimage as discussed
in the two last bullets of Section 4.7.2.

4.7.4 Length extension

Length extension consists in, given h(M) for an unknown input M , being able to predict the
value of h(M ||x) for some string x. For a sponge function, length extension is successful if
one can find the inner state at the end of the squeezing of M . This comes down to binding
the output to a state, discussed in Section 4.6. Note that the state is probably only uniquely
determined if n ≥ b. Otherwise, the expected number of state values the output can be bound
to is 2b−n. In that case, the probability of success of length extension is max(2n−b, 2−n).

In principle, if the permutation f has high input-output correlations (v, u) with v̂ = û =
0c, this could be exploited to improve the probability of guessing right when doing length
extension by a single block.

4.7.5 Pseudo-random function

One can use a sponge function with an iterated permutation as a pseudorandom function
(PRF) by pre-pending the input by a secret key: PRF[k](M) = sponge(k||M). As explained
in Section 6.1, this can be used to construct MAC functions and stream ciphers. A similar
application is randomized hashing where an unpredictable value takes the place of the key.

31 / 78

Keccak 4. Sponge functions with an iterated permutation

Distinguishing the resulting PRF from a random oracle can be done by finding the key,
or by detecting properties in the output that would not be present for a random oracle.
Examples of such properties are the detection of large DP values or high correlations over f .
If the key is shorter than the bitrate, finding it given the output corresponding to a single
input is a CICO problem. If the key is longer, this becomes a multi-round absorbing CICO
problem. If more than a single input-output pair is available, this is no longer the case. In
general, an adversary can even request outputs corresponding with adaptively chosen inputs.

When we use a PRF for MAC computation, the length of the key is typically smaller
than the bitrate and the output is limited to (less than) a single output block. For this case,
breaking the MAC function can be considered as solving the following generic problem for f .

An adversary can query f for inputs P with P = k||x||0c and

• k: an nk-bit secret key,

• x: an r − nk-bit value chosen by the adversary,

and is given the first n bits of f(P), with n ≤ r. The goal of the adversary is predict the
output of bf(P)cn for non-queried values of x with a success probability higher than 2−n.

4.7.6 Output subset properties

One can define an m-bit hash function based on a sponge function by, instead of taking
the m first bits of its output, just specify m bit positions in the output and consider the
corresponding m bits as the output. Such a hash function shall not be weaker than a hash
function where the m bits are just taken as the first m bits of the sponge output stream. If
the m bits are from the same output block, there is little difference between the two functions.
If the m bits are taken from different output blocks, the CICO problems implied by attacking
the function tend to become more complicated and are expected to be harder to solve.

32 / 78

Chapter 5

The Keccak-f permutations

This chapter discusses the properties of the Keccak-f permutations that are relevant for
the security of Keccak. After discussing some structural properties, we treat the different
mappings that make up the round function. This is followed by a discussion of differential
and linear cryptanalysis. Finally we briefly discuss the applicability of a number of cryptana-
lytic techniques to Keccak-f and the results of some experiments we conducted, mainly on
Keccak-f [25].

As a reminder, the seven Keccak-f permutations are parameterized by their width b =
25w = 25× 2`, for 0 ≤ ` ≤ 6.

5.1 Translation invariance

Let b = τ(a) with τ a mapping that translates the state by 1 bit in the direction of the
z-axis. For 0 < z < w we have b[x][y][z] = a[x][y][z − 1] and for z = 0 we have b[x][y][0] =
a[x][y][w − 1]. Translating over t bits gives b[x][y][z] = a[x][y][(z − t) mod w]. In general, a
translation τ [tx][ty][tz] can be characterized by a vector with three components (tx, ty, tz) and
this gives:

b[x][y][z] = a[(x− tx) mod 5][(y − ty) mod 5][(z − tz) mod w] .

Now we can define translation-invariance.

Definition 4. A mapping α is translation-invariant in direction (tx, ty, tz) if

τ [tx][ty][tz] ◦ α = α ◦ τ [tx][ty][tz] .

Let us now define the z-period of a state.

Definition 5. The z-period of a state a is the smallest integer d > 0 such that:

∀x, y ∈ Z5 and z ∈ Zw : a[x][y][(z + d) mod w] = a[x][y][z] .

It is easy to prove the following properties:

• The z-period of a state divides w.

• A state a with z-period d can be represented by w, its z-period d, and its d first slices
a[.][.][z] with z < d. We call this the z-reduced representation of a.

33 / 78

Keccak 5. The Keccak-f permutations

• The number of states with z-period d is zero if d does not divide w and fully determined
by d only, otherwise.

• There is a one-to-one mapping between the states a′ with z-period d for any lane length
w that is a multiple of d and the states a with z-period d of lane length d: a′[.][.][z] =
a[.][.][z mod d].

• If α is translation-invariant in the direction of the z-axis, the z-period of α(a) divides
the z-period of a. Moreover, the z-reduced state of α(a) is independent of w.

• If α is injective and translation-invariant, α preserves the z-period.

• For a given w, the z-period defines a partition on the states.

• For w values that are a power of two (the only ones allowed in Keccak), the state
space consists of the states with z-period 1, 2, 22 up to 2` = w.

• The number of states with z-period 1 is 225. The number of states with z-period 2d for
d > 1 is 22d25 − 22d−125.

5.2 The Matryoshka structure

With the exception of ι, all step mappings of the Keccak-f round function are translation-
invariant in the direction of the z-axis. This allows the introduction of a size parameter that
can easily be varied without having to re-specify the step mappings. As in several types
of analysis abstraction can be made of the addition of constants, this allows the re-use of
structures for small width versions to symmetric structures for large width versions. We
refer to Section 5.5.2 for an example. As the allowed lane lengths are all powers of two,
every smaller lane length divides a larger lane length. So, as the propagation structures for
smaller width version are embedded as symmetric structure in larger width versions, we call
it Matryoshka, after the well-known Russian dolls.

5.3 The step mappings of Keccak-f

A round is composed from a sequence of dedicated mappings, each one with its particular
task. The steps have a simple description leading to a specification that is compact and in
which no trapdoor can be hidden.

Mapping the lanes of the state, i.e., the one-dimensional sub-arrays in the direction of the
x-axis, onto CPU words, results in simple and efficient software implementation for the step
mappings. We start the discussion of each of the step mappings by pseudocode where the
variables a[x][y] represent the old values of lanes and A[x][y] the new values. The operations
on the lanes are limited to bitwise Boolean operations and rotations. In our pseudocode we
denote by ROT(a, d) a translation of a over d bits where bit in position z is mapped to position
z + d mod w. If the CPU word length equals the lane length, the latter can be implemented
with rotate instructions. Otherwise a number of shift and bitwise Boolean instructions must
be combined.

34 / 78

5. The Keccak-f permutations Keccak

Figure 5.1: χ applied to a single row

5.3.1 Properties of χ

Figure 5.1 contains a schematic representation of χ and Algorithm 2 its pseudocode.

Algorithm 2 χ

for y = 0 to 4 do
for x = 0 to 4 do
A[x][y] = a[x][y]⊕ ((NOT a[x+ 1][y]) AND a[x+ 2][y])

end for
end for

χ is the only nonlinear mapping in Keccak-f . Without it, the Keccak-f round function
would be linear. It can be seen as the parallel application of 5w S-boxes operating on 5-bit
rows. χ is translation-invariant in all directions and has algebraic degree two, which has the
following consequences:

• The cardinality of a differential (a′, b′) over χ is either zero or a power of two. The
corresponding (restriction) weight w(a′, b′) = w(a′) is an integer that only depends on
the input difference pattern a′.

• For a given input difference a′, the space of possible output differences forms a linear
affine variety [17] with 2w(a′) elements.

• A possible differential imposes w(a′) linear conditions on the bits of input a.

• For a given output selection vector u, the space of input selection vectors v whose
parities have a non-zero correlation with the parity determined by u form a linear affine
variety with 2w(u,v) elements, with w(v, u) = w(u) the (correlation) weight function that
returns an even integer that only depends on the output selection pattern u.

• The magnitude of a correlation over χ is either zero or equal to 2w(u).

35 / 78

Keccak 5. The Keccak-f permutations

We refer to [18, Section 6.9] for explanations on how to compute the restriction and correlation
weights and how to determine the linear affine varieties and conditions on the input.

If we consider χ restricted to a single row, there are in total 31 non-zero patterns. The
distribution of the weights over these patterns is the following:

• Difference patterns: 5 with weight 2, 15 with weight 3 and 11 with weight 4. The weight
is equal to the Hamming weight plus the number of patterns 001. When all 5 bits are
active, the weight is 4.

• Selection patterns: 10 with weight 2 (those with 1 active bit or two neighboring active
bits) and 21 with weight 4.

χ is invertible but its inverse is of a different nature than χ itself. For example, it does not
have algebraic degree 2. We refer to [18, Section 6.6.2] for an algorithm for computing the
inverse of χ.

χ is simply the complement of the nonlinear function called γ used in RadioGatún[5],
Panama [19] and several other ciphers [18]. We have chosen it for its simple nonlinear
propagation properties, its simple algebraic expression and its low gate count: one XOR, one
AND and one NOT operation per state bit.

5.3.2 Properties of θ

Figure 5.2 contains a schematic representation of θ and Algorithm 3 its pseudocode.

Algorithm 3 θ

for x = 0 to 4 do
p[x] = a[x][0]
for y = 1 to 4 do
p[x] = p[x]⊕ a[x][y]

end for
end for
for x = 0 to 4 do
P [x] = p[x− 1]⊕ ROT(p[x+ 1], 1)
for y = 0 to 4 do
A[x][y] = a[x][y]⊕ P [x]

end for
end for

θ is a linear mapping aimed at diffusion and is translation-invariant in all directions.
Without it, the Keccak-f round function would not provide diffusion of any significance.
The θ mapping has a branch number as low as 4 but provides a high level of diffusion on the
average. We refer to Section 5.5.3 for a more detailed treatment of this.

The state can be represented by a polynomial in the three variables x, y and z with binary
coefficients. Here the coefficient of the monomial xiyjzk denotes the value of bit a[i][j][k].
The exponents i and j range from 0 to 4 and the exponent k ranges from 0 to w − 1. In this
representation a translation τ [tx][ty][tz] corresponds with the multiplication by the monomial
xtxytyztz modulo the three polynomials 1+x5, 1+y5 and 1+zw. More exactly, the polynomial
representing the state is an element of a polynomial quotient ring defined by the polynomial

36 / 78

5. The Keccak-f permutations Keccak

x

y z z

Figure 5.2: θ applied to a single bit

ring over GF(2)[x, y, z] modulo the ideal generated by
〈
1 + x5, 1 + y5, 1 + zw

〉
. A translation

corresponds with multiplication by xtxytyztz in this quotient ring. The z-period of a state a
is d if d is the smallest nonzero integer such that 1 + zd divides a. Let a′ be the polynomial
corresponding to the z-reduced state of a, then a can be written as

a = (1 + zd + z2d + . . .+ zw−d)× a′ = 1 + zw

1 + zd
× a′ .

When the state is represented by a polynomial, the mapping θ can be expressed as the
multiplication (in the quotient ring defined above) by the following polynomial :

1 + ȳ
(
x+ x4z

)
with ȳ =

4∑
i=0

yi =
1 + y5

1 + y
. (5.1)

The inverse of θ corresponds with the multiplication by the polynomial that is the inverse
of polynomial (5.1). For w = 64, we have computed this with the open source mathematics
software SAGE [1] after doing a number of manipulations. First, we assume it is of the form
1 + ȳQ with Q a polynomial in x and z only:(

1 + ȳ(x+ x4z)
)
× (1 + ȳQ) = 1 mod

〈
1 + x5, 1 + y5, 1 + z64

〉
.

Working this out and using ȳ2 = ȳ yields

Q = 1 + (1 + x+ x4z)−1 mod
〈
1 + x5, 1 + z64

〉
.

The inverse of 1+x+x4z can be computed with a variant of the extended Euclidian algorithm
for polynomials in multiple variables. At the time of writing this was unfortunately not
supported by SAGE. Therefore, we reduced the number of variables to one by using the
change of variables t = x−2z. We have x = t192 and x4z = t193, yielding:

Q = 1 + (1 + t192 + t193)−1 mod (1 + t320) .

37 / 78

Keccak 5. The Keccak-f permutations

By performing a change in variables from t to x and z again, Q is obtained.
For w < 64, the inverse can simply be found by reducing Q modulo 1 + zw. For w = 1,

the inverse of θ reduces to 1 + ȳ(x2 + x3).
For all values of w = 2`, the Hamming weight of the polynomial of θ−1 is of the order

b/2. This implies that applying θ−1 to a difference pattern with a single active bit results in
a difference pattern with about half of the bits active. Similarly, a selection pattern at the
output of θ−1 determines a selection pattern at its input with about half of the bits active.

We have chosen θ for its high average diffusion and low gate count: two XORs per bit.
Thanks to the interaction with χ each bit at the input of a round potentially affects 31 bits
at its output and each bit at the output of a round depends on 31 bits at its input. Note that
without the translation of one of the two column parities this would only be 25 bits.

5.3.3 Properties of π

Figure 5.3 contains a schematic representation of π and Algorithm 4 its pseudocode.

Algorithm 4 π

for x = 0 to 4 do
for y = 0 to 4 do(

X
Y

)
=
(

0 1
2 3

)(
x
y

)
A[X][Y] = a[x][y]

end for
end for

Note that in an efficient program π can be implemented implicitly by addressing.
The mapping π is a transposition of the lanes that provides dispersion aimed at long-term

diffusion. Without it, Keccak-f would exhibit periodic trails of low weight. π operates in a
linear way on the coordinates (x, y): the lane in position (x, y) goes to position (x, y)MT, with
M = (0 1

2 3) a 2 by 2 matrix with elements in GF(5). It follows that the lane in the origin (0, 0)
does not change position. As π operates on the slices independently, it is translation-invariant
in the z-direction. The inverse of π is defined by M−1.

Within a slice, we can define 6 axes, where each axis defines a direction that partitions
the 25 positions of a slice in 5 sets:

• x-axis: rows or planes;

• y-axis: columns or sheets;

• y = x-axis: rising 1-slope;

• y = −x-axis: falling 1-slope;

• y = 2x-axis: rising 2-slope;

• y = −2x axis: falling 2-slope;

The x-axis is just the row through the origin, the y-axis is the column through the origin,
etc.

38 / 78

5. The Keccak-f permutations Keccak

Figure 5.3: π applied to a slice. Note that x = y = 0 is depicted at the center of the slice.

There are many matrices that could be used for π. In fact, the invertible 2 by 2 matrices
with elements in GF(5) with the matrix multiplication form a group with 480 elements con-
taining elements of order 1, 2, 3, 4, 5, 6, 8, 10, 12, 20 and 24. Each of these matrices defines
a permutation on the 6 axes, and equivalently, on the 6 directions. Thanks to its linearity,
the 5 positions on an axis are mapped to 5 positions on an axis (not necessarily the same).
Similarly, the 5 positions that are on a line parallel to an axis, are mapped to 5 positions on
a line parallel to an axis.

For π we have chosen a matrix that defines a permutation of the axes where they are in
a single cycle of length 6 for reasons explained in Section 5.5.6. Implementing π in hardware
requires no gates but results in wiring.

5.3.4 Properties of ρ

Figure 5.4 contains a schematic representation of ρ, while Table 5.1 lists its translation offsets.
Algorithm 5 gives pseudocode for ρ.

Algorithm 5 ρ

A[0][0] = a[0][0](
x
y

)
=
(

1
0

)
for t = 0 to 23 do
A[x][y] = ROT(a[x][y], (t+ 1)(t+ 2)/2)(
x
y

)
=
(

0 1
2 3

)(
x
y

)
end for

39 / 78

Keccak 5. The Keccak-f permutations

Figure 5.4: ρ applied to the lanes. Note that x = y = 0 is depicted at the center of the slices.

x = 3 x = 4 x = 0 x = 1 x = 2
y = 2 153 231 3 10 171
y = 1 55 276 36 300 6
y = 0 28 91 0 1 190
y = 4 120 78 210 66 253
y = 3 21 136 105 45 15

Table 5.1: The offsets of ρ

The mapping ρ consists of translations within the lanes aimed at providing inter-slice
dispersion. Without it, diffusion between the slices would be very slow. It is translation-
invariant in the z-direction. The inverse of ρ is the set of lane translations where the constants
are the same but the direction is reversed.

The 25 translation constants are the values defined by i(i+ 1)/2 modulo the lane length.
It can be proven that for any `, the sequence i(i+ 1)/2 mod 2` has period 2`+1 and that any
sub-sequence with n2` ≤ i < (n + 1)2` runs through all values of Z2` . From this it follows
that for lane lengths 64 and 32, all translation constants are different. For lane length 16,
9 translation constants occur twice and 7 once. For lane lengths 8, 4 and 2, all translation
constants occur equally often except the translation constant 0, that occurs one time more
often. For the mapping of the (one-dimensional) sequence of translation constants to the lanes
arranged in two dimensions x and y we make use of the matrix of π. This groups the lanes
in a cycle of length 24 on the one hand and the origin on the other. The non-zero translation
constants are allocated to the lanes in the cycle, starting from (1, 0).

ρ is very similar to the transpositions used in RadioGatún[5], Panama [19] and Step-
RightUp [18]. In hardware its computational cost corresponds to wiring.

5.3.5 Properties of ι

The mapping ι consists of the addition of round constants and is aimed at disrupting sym-
metry. Without it, the round function would be translation-invariant in the z direction and
all rounds of Keccak-f would be equal making it subject to attacks exploiting symmetry
such as slide attacks. The number of active bit positions of the round constants, i.e., the bit
positions in which the round constant can differ from 0, is ` + 1. As ` increases, the round

40 / 78

5. The Keccak-f permutations Keccak

constants add more and more asymmetry.
The bits of the round constants are different from round to round and are taken as the

output of a maximum-length LFSR. The constants are only added in a single lane of the
state. Because of this, the disruption diffuses through θ and χ to all lanes of the state after
a single round.

In hardware, the computational cost of ι is a few XORs and some circuitry for the gener-
ating LFSR. In software, it is a single bitwise XOR instruction.

5.3.6 The order of steps within a round

The reason why the round function starts with θ is due to the usage of Keccak-f in the
sponge construction. It provides a mixing between the inner and outer parts of the state.
Typically, the inner part is the part that is unknown to, or not under the control of the
adversary. The order of the other step mappings is arbitrary.

5.4 Choice of parameters: the number of rounds

We here provide our estimate for our SHA-3 candidates specified in [7, Section 4] of how many
rounds in Keccak-f [1600] are sufficient to provide resistance against three types of attacks:

• Construction of structural distinguisher for Keccak-f [1600]: 13 rounds.

• Shortcut attack for collision or (second) preimage for any of the five candidates: 11
rounds.

• Practical generation of an actual collision or (second) preimage for any of the five
candidates (where the output of Keccak[] is truncated to not less than 256 bits): 9
rounds.

These estimates are based on the results of our preliminary analysis that is treated in the
remainder of this chapter. By having 18 rounds in Keccak-f [1600], we take a considerable
security margin with respect to all three types of attack.

5.5 Differential and linear cryptanalysis

5.5.1 Trail propagation

Keccak-f can be seen as the alternation of the nonlinear mapping χ, the addition of the
round constant ι, and a linear mapping π ◦ ρ ◦ θ, that we will denote by λ.

Differential trails propagate in the following way. A difference pattern a′ at the input of
χ determines a linear affine variety of possible difference patterns b′ at its output. This can
be expressed by an offset and a basis with w(a′) elements. The mapping ι has no impact
on a difference pattern and can be ignored in differential trails. A difference pattern a′ at
the input of λ determines the difference pattern b′ at its output by b′ = λ(a′). It suffices to
specify one difference pattern per round to fully determine a differential trail. We choose to
specify the difference pattern at the input of χ. This has the advantage that the weight of

41 / 78

Keccak 5. The Keccak-f permutations

the trail is given by the sum of the weights of its difference patterns. An n-round differential
trail Q defined by the difference patterns (q0, q1, . . . , qn) has weight:

w(Q) =
n−1∑
i=0

w(qi) .

Linear trails propagate in the following way. A selection pattern u at the output of χ
determines a linear affine variety of possible selection patterns v at its input. Again, this can
be expressed by a basis with w(u) elements and an offset. The mapping ι has no impact on
a selection pattern. A selection pattern u at the output of λ determines the selection pattern
v at its input. If we express the linear mapping λ by the multiplication by a matrix Mλ,
we have v = MT

λ u. It suffices to specify one selection pattern per round to fully determine
a linear trail. Here we choose to specify the selection pattern at the output of χ. This has
the advantage that the weight of the trail is given by the sum of the weights of its selection
patterns. An n-round linear trail Q defined by the selection patterns (q0, q1, . . . , qn) has
weight:

w(Q) =
n∑
i=1

w(qi) .

The magnitude of the correlation contribution of a trail is given by 2−w(Q). The sign is the
product of the correlations over the χ and ι steps in the trail. The sign of the correlation
contribution of a linear trail hence depends on the round constants.

5.5.2 The Matryoshka consequence

The weight and existence of trails (both differential and linear) is independent of ι. The fact
that all other step mappings of the round function are translation-invariant in the direction
of the z-axis, makes that a trail Q implies w − 1 other trails: those obtained by translating
the patterns of Q over any non-zero offset in the z direction. If all patterns in a trail have a
z-period below or equal to d, this implies only d− 1 other trails.

Moreover, a trail for a given width b implies a trail for all larger widths b′. The patterns
are just defined by their z-reduced representations and the weight must be multiplied by b′/b.
Note that this is not true for the cardinality of differential trails and the sign of the correlation
contribution of linear trails, as these do depend on the round constants.

5.5.3 The column parity kernel

The mapping θ is there to provide diffusion. It can be expressed as follows: add to each bit
a[x][y][z] the bitwise sum of the parities of two columns: that of a[x− 1][·][z] and that of
a[x+ 1][·][z − 1]. From this we can see that for states in which all columns have even parity,
θ is the identity. We call this set of states the column parity kernel or CP-kernel for short.

The size of the CP-kernel is 220w as there are in total 2b = 225w states and there are 25w

independent parity conditions. The kernel contains states with Hamming weight values as
low as 2: those with two active bits in a single column. Due to these states, θ only has a
branch number (expressed in Hamming weight) of 4.

The low branch number is a consequence of the fact that only the column parities prop-
agate. One could consider changing θ to improve the worst-case diffusion, but this would

42 / 78

5. The Keccak-f permutations Keccak

significantly increase the computational cost of θ as well. Instead, we have chosen to address
the CP-kernel issue by carefully choosing the mapping π.

We can compute from a 25w-bit state its 5w-bit column parity pattern. These patterns
partition the state space in 25w subsets, called the parity classes, with each 220w elements.
We can now consider the branch number restricted to the states in a given parity class. As
said, the minimum branch number that can occur is 4 for the CP-kernel, the parity class with
the all-zero column parity pattern. Over all other parity classes, the branch number is at
least 12.

Note that for states where all columns have odd parity, θ adds 0 to every bit and also acts
as the identity. However, the Hamming weight of states in the corresponding parity class is
at least 5w resulting in a branch number of 10w.

5.5.4 One and two-round trails

Now we will have a look at minimum weights for trails with one and two rounds. The minimum
weight for a one-round differential trail (q0, q1) is obtained by taking a difference pattern q0
with a single active bit and has weight 2. For a linear trail this is obtained by a selection
pattern q1 with a single active bit or two neighboring active bits in the same row, and the
weight is also 2. This is independent of the width of Keccak-f .

For the minimum weight of two-round trails we use the following property of χ: if a
difference pattern at the input of χ restricted to a row has a single active bit, the same
difference pattern is a possible difference pattern at its output. Hence for difference patterns
with zero or one active bits per row, χ can behave as the identity. Similarly, for selection
patterns with zero or one active bits per row, χ can behave as the identity. We call such trails
in which the patterns at the input and output of χ are the same, χ-zero trails. Note that all
patterns in a χ-zero trail are fully determined by the first pattern q0.

For all widths, the two-round trails with minimum weight are χ-zero trails. For a differ-
ential trail, we choose for q0 a difference pattern with two active bits that are in the same
column. After χ the difference pattern has not changed and as it is in the CP-kernel, it goes
unchanged through θ as well. The mappings π and ρ move the two active bits to different
columns, but in no case to the same row. This results in a value of q1 with two active bits
in different rows. As the weight of both q0 and q1 is 4, the resulting trail has weight 8. For
linear trails, a similar reasoning applies and the minimum trail weight is also 8. Note that
the low weight of these trails is due to the fact that the difference pattern at the input of θ
in round 0 is in the CP-kernel.

5.5.5 Three-round trails: kernel vortices

From here on, we concentrate on differential trails as the explanation is very similar for linear
trails. We can construct a three-round χ-zero trail where both difference patterns q0 and q1
are in the CP-kernel. As in a χ-zero trail χ behaves as the identity and q0 is in the CP-kernel,
we have q1 = π(ρ(q0)). Hence, we can transfer the conditions that q0 is in the kernel to
conditions on q1, or vice versa.

We will now look for patterns q0 where both q0 and π(ρ(q0)) are in the CP-kernel. q0
cannot be a pattern with only two active bits in one column since π ◦ ρ maps these bits to
two different columns in q1.

43 / 78

Keccak 5. The Keccak-f permutations

The minimum number of active bits in q0 is four, where both q0 and q1 have two active
columns with each two active bits. We will denote these four active bits as points 0, 1, 2 and
3. Without loss of generality, we assume these points are grouped two by two in columns
in q0: {0, 1} in one column and {2, 3} in another one. In q1 we assume they are grouped in
columns as {1, 2} and {3, 0}.

The mapping π maps sheets (containing the columns) to falling 2-slopes and maps planes
to sheets. Hence the points {0, 1} and {2, 3} are in falling 2-slopes in q1 and the points
{1, 2} and {3, 0} are in planes in q0. This implies that projected on the (x, y) plane, the four
points of q0 form a rectangle with horizontal and vertical sides. Similarly, in q1 they form a
parallelogram with vertical sides and sides that are falling 2-slopes.

The (x, y) coordinates of the four points in q0 are completely determined by those of the
two opposite corner points (x0, y0) and (x2, y2). The four points have coordinates: (x0, y0),
(x0, y2), (x2, y2) and (x2, y0). The number of possible choices is

(
2
5

)2
= 100. Now let us have

a look at their z coordinates. Points 0 and 1 should be in the same column and points 2 and
3 too. Hence z1 = z0 and z3 = z2. Moreover, ρ shall map points 1 and 2 to the same slice
and bits 3 and 0 too. This results in the following conditions for their z-coordinates:

z0 + r[x0][y2] = z2 + r[x2][y2] modw ,
z2 + r[x2][y0] = z0 + r[x0][y0] modw ,

(5.2)

with r[x][y] denoting the translation offset of ρ in position (x, y). They can be converted to
the following two conditions:

z2 = z0 + r[x0][y2]− r[x2][y2] modw ,
z2 = z0 + r[x0][y0]− r[x2][y0] modw .

In any case z0 can be freely chosen, and this determines z2. Subtracting these two equations
eliminates z0 and z2 and results in:

r[x0][y0]− r[x0][y2] + r[x2][y2]− r[x2][y0] = 0 mod w . (5.3)

If this equation is not satisfied, the equations (5.2) have no solution.
Consider now w = 1. In that case Equation (5.3) is always satisfied. However, in order to

be χ-zero, the points must be in different rows, and hence in different planes, both in q0 and
q1, and this is not possible for a rectangle.

If ` ≥ 1, Equation (5.3) has a priori a probability of 2−` of being satisfied. Hence, we
can expect about 2−`100 rectangles to define a state q0 with both q0 and π(ρ(q0)) in the
CP-kernel. So it is not inconceivable that such patterns exists for w = 64. This would result
in a 3-round trail with weight of 8 per round and hence a total weight of 24. However, for
our choice of π and ρ, there are no such trails for w > 16.

Note that here also the Matryoshka principle plays. First, the z-coordinate of one of
the points can be freely chosen and determines all others. So, given a rectangle that has a
solution for Equation (5.3), there are 2` patterns q0, one for each choice of z0. Second, if
Equation (5.3) is not satisfied for ` but it is for some `′ < `, it implies a pattern q0 with 2`−`

′
4

points rather than 4 for which both q0 and π(ρ(q0)) are in the kernel.
These patterns can be generalized by extending the number of active bits: a pattern q0

with both q0 and π(ρ(q0)) in the kernel can be constructed by arranging 2e points in a cycle
in the (x, y) plane and giving the appropriate z-coordinates. In such a cycle each combination

44 / 78

5. The Keccak-f permutations Keccak

of points {2i, 2i+ 1} are in the same sheet and each combination of points {2i+ 1, 2i+ 2} are
in the same plane. We call such a cycle of 2e (x, y) positions a kernel vortex V .

For the z coordinates, the conditions that the points {2i, 2i+ 1} are in the same column
in q0 and the points {2i + 1, 2i + 2} are in the same column in q1 results in 2e conditions.
Similar to the rectangle case, these conditions only have a solution if the ρ rotation constants
in the lanes of the cycle satisfy a condition. For a given kernel vortex V , we define its depth
d(V) as:

d(V) =
2e−1∑
i=0

(−1)ir[point i]. (5.4)

Now, the vortex results in a valid pattern q0 if d(V) mod w = 0. We call the largest power
of 2 dividing d(V) the character of the vortex c(V). If d(V) = 0, we say its character is
c(V) = ∞. Summarizing, a vortex V defines a valid pattern q0 with 2e active bits for lane
length w ≤ c(V). For constructing low-weight 3-round trails, it suffices to find vortices with
small e and large character: given a vortex V it results in a 3-round trail with weight 12e
for all values of 2` ≤ c(V) and with weight 12e2`/c(V) for all values of 2` > c(V) (using
symmetric trails of period c(V)).

As the length of vortices grows, so does their number. There are 600 vortices of length
6, 8400 of length 8 and 104040 of length 10. The character c(V) over these vortices has an
exponential distribution: about half of them has character 1, 1/4 have character 2, 1/8 have
character 4 and so on. It follows that as their length 2e grows, there are more and more
vortices that result in valid pattern q0 with 2e active bits, even for lane length 64.

Moreover, one can construct patterns q0 containing two or more vortices, provided that
they do not result in a row with two active bits in either q0 or q1. The character of such a
combination is just the minimum of the characters of its component vortices. Clearly, due the
large number of kernel vortices, it is likely that there are three-round trails with low weight
for any choice of ρ and π. For our choice of π and ρ, the vortex that leads to the 3-round
trail with the smallest weight for Keccak-f is one of length 6 and character 64. It results in
a 3-round trail with weight 36.

5.5.6 Beyond three-round trails: choice of π

We will now try to extend this to four-round trails: we try to find patterns q0 such that q0,
q1 and q2 are in the CP-kernel.

A vortex of length 4, i.e., with e = 2 cannot do the job with our choice of π: a rectangle
in q0 with sheets and planes as sides results in a parallelogram in q1 with falling 2-slopes and
columns as sides and in a parallelogram in q2 with rising 2-slopes and falling 2-slopes as sides.
Hence the four points in q2 cannot grouped in columns 2 by 2 and hence it cannot be in the
kernel.

Consider now a vortex of length 6. We choose the points such that the grouping in columns
is {0, 1}, {2, 3}, {4, 5} in q0, it is {1, 2}, {3, 4}, {5, 0} in q1 and {1, 4}, {2, 5}, {3, 0} in q2. The
grouping in q1 simply implies that {1, 2}, {3, 4}, {5, 0} are grouped in planes in q0. Actually,
the first two groupings are similar to the three-round trail case: they determine a character
c(V) and fix the z coordinates of all points but one. We will now study the implications of the
grouping in q2 on the (x, y) coordinates. Grouping in columns (sheets) in q2 implies grouping
in planes in q1 and subsequently grouping in rising 1-slopes in q0.

45 / 78

Keccak 5. The Keccak-f permutations

For the z-coordinates this results in 3 additional conditions: points 1 and 4, points 2 and
5 and points 3 and 0 must have the same z-coordinate in q2. Similar to Equation (5.2) these
conditions are equalities modulo 2`. For each of the equations, the a priori probability that it
is satisfied for a given value of 2` is 2−`. With each of these equations we can again associate
a character: the largest value w that is a power of two for which the equation is satisfied. The
4-round character (i.e. leading to q0, q1 and q2 all three in the kernel) of the vortex in this
context is now the minimum of the 3-round character (i.e. leading to both q0 and q1 in the
kernel) of the vortex and the characters of the three additional equations. The probability
that the character is larger than 2` is approximately 2−4(`+1). It turns out that for our choice
of π and ρ, 8 of the 50 candidate vortices have character 2 and the others have all character
1.

The conditions on the (x, y) coordinates implies that only vortices are suited that have an
even number of active points in each sheet, each plane and each rising 1-slope. This limits the
number of suitable vortices of length 6 to 50, of length 8 to 300, of length 10 to 4180 and of
length 12 to 53750. To illustrate this, let us now study the number of activity patterns in the
(x, y) coordinates of q0 assuming there is only a single active bit in each lane. In total there
are 225 − 1 nonzero patterns. If we impose the pattern to be in the CP-kernel, the parity
of each sheet must be even, resulting in 5 independent linear equations. Hence there are
220 − 1 patterns in the kernel. Additionally requiring q1 to be in the kernel imposes that the
number of points in each plane of q0 must be even. This adds 5 parity conditions. However,
one is redundant with the ones due to q0 as the total parity of the activity pattern over the
state is even. Hence there are 216 − 1 such patterns. Additionally requiring q2 to be in the
kernel imposes that the number of points in each rising 1-slope of q0 must be even. This
adds again 5 new parity condition, with one of them redundant and reduces the number of
possible patterns to 212 − 1. Since π runs through all directions, adding more rounds results
in 28 − 1, and 24 − 1 and finally 0 patterns. It follows that the range of possible activity
patterns shrinks exponentially as the number of rounds grows.

This is the main reason for choosing a π that runs through all axes in a single cycle.
Consider a π that would map sheets to rising 1-slopes and rising 1-slopes back to sheets. For
such a π there would be 216 − 1 activity patterns with q0, q1 and q2 in the kernel. Moreover,
this number would not decrease for more rounds and periodic χ-zero trails of low weight might
appear.

When trying vortices with length above 6, the conditions on the z coordinates can be
more involved. If in a particular sheet of q2 the number of active points is 2, the condition is
the same as for the case described above: their z coordinates should match. However, if there
are 4, 6 or any even number of active points, there are several ways for them to be grouped in
different columns. In general a character can be computed per sheet and the character of the
complete structure is the minimum of all these characters. The character for a given sheet
can be computed in a recursive way. The probability that an active sheet has character 1
is 1/2. For larger characters, the probability decreases faster with growing number of active
bits in the character.

We have done tests for vortex lengths up to 14 and for constructions making use of two
vortices totaling to about 1 million valid q0 patterns. The vast majority have character
1, less than 13000 have character 2, 103 have character 4 and one has character 8. This
last one is based on vortex of length 8 and it results in a 4-round trail with weight 512 in
Keccak-f [1600].

46 / 78

5. The Keccak-f permutations Keccak

5.5.7 Truncated trails and differentials

Truncated trails deal with the propagation of activity patterns rather than difference patterns
[35]. A partition of the state in sub-blocks is defined where the activity patterns describe
whether a sub-block has no active bits (passive or 0) or has at least one active bit (active or
1). The structure of the state in Keccak-f suggests several bundlings. In a first order, one
may take rows, columns, lanes, sheets, planes or slices as sub-blocks. We have gone through
an exercise of attempting this but got stuck very soon for each of the choices. The problem is
that for every choice, at least one of the step mappings completely tears apart the sub-blocks.
We have also considered hybrid state definitions, such as the combination of row activities
with column parities. However, in the cases that could be interesting, i.e., states with low
weight (with respect to the truncation considered), this soon lead to the full specification of
the difference.

In [33] truncated cryptanalysis was applied to RadioGatún [5], where the truncation
was defined by a linear subspaces of the word vectors. In the attack it made sense as part
of the RadioGatún round function is linear. In Keccak-f the round function is uniformly
non-linear and we do not believe that this approach can work.

5.5.8 Other group operations

We have considered differential and linear cryptanalysis while assuming the bitwise addition
as the group operation. One may equivalently consider differential and linear properties with
respect to a wide range of other group operations that can be defined on the state. However,
for any other choice than the bitwise addition, θ becomes a nonlinear function and for most
choices also ι, π and ρ become nonlinear. We do not expect this to lead to better results.

5.5.9 Differential and linear cryptanalysis variants

There are many attacks that use elements from differential cryptanalysis and/or linear crypt-
analysis. Most are applied to block ciphers to extract the key. We have considered a number
of techniques:

• Higher-order differentials [35]: we believe that due to the high average diffusion it is
very difficult to construct higher-order differentials of any significance for Keccak-f .

• Impossible differentials [58]: we expect the Keccak-f permutations to behave as ran-
dom permutations. If so, the cardinality of differentials has a Poisson distribution with
λ = 1/2 [24] and hence about 60 % of the differentials in Keccak-f will have cardinality
0, and so are impossible. However, given a differential (a, b), it is a priori hard to predict
whether it is impossible. Settings in which one could exploit impossible differentials are
keyed modes, where part of the input is fixed and unknown. In this case one would
need truncated impossible differentials. If the number of rounds is sufficient to avoid
low-weight differential trails, we believe this can pose no problem.

• Differential-linear attacks [40]: in these attacks one concatenates a differential over a
number of rounds and a correlation over a number of subsequent rounds. We think
that for reduced-round versions of Keccak-f differential-linear distinguishers are a
candidate for the most powerful structural distinguisher. The required number of pairs
is of the order DP−2LP−2 with DP the differential probability of the distinguisher’s

47 / 78

Keccak 5. The Keccak-f permutations

DC LC
Number of rounds w = 1 w = 2 w = 1 w = 2
2 8 8 8 8
3 16 18 16 16
4 23 29 24 30
5 30 42 30 ?
6 37 54 38 ?

Table 5.2: Lower bounds for trail weights

differential and LP the square of the distinguisher’s correlation. If we assume the
differentials is dominated by a single low-weight differential trail, we have DP ≈ 2−w(Qd).
Additionally, if we assume the correlation is dominated by a single low-weight linear
trail, we have DP ≈ 2−w(Ql). This gives for the number of required pairs: 22(w(Qd)+w(Ql)).
The number of required pairs to exploit a trail in a simple differential or linear attack is
of the order 2w(Q). Hence, over a number of rounds, the differential-linear distinguisher
is more powerful than a simple differential or linear distinguisher if w(Qd) + w(Ql) <
w(Q)/2. Where Q is a trail over all rounds, Qd a trail of the first n rounds and Ql a trail
over the remaining rounds. As we expect in the Keccak-f variants with large width
and a low number of rounds, the minimum trail weight tends to grow exponentially,
and the chaining of two half-length trails is favored over a single full-length trail.

• (Amplified) Boomerang [55, 31] and rectangle attacks [9]: These attacks chain (sets
of) differentials over a small number of rounds to construct distinguishers over a larger
number of rounds. These are also likely candidates for good structural distinguishers,
for the same reason as differential-linear ones.

• Integral cryptanalysis (Square attacks) [20]: this type of cryptanalysis lends itself very
well to ciphers that treat the state in blocks. It was applied to bit-oriented ciphers
in [60]. Based on the findings of that paper we estimate that it will only work on
reduced-round versions of Keccak-f with three to four rounds.

In this section we have limited ourselves to the construction of structural distinguishers. We
have not discussed how these distinguishers can be used to attack the sponge function making
use of the permutation.

5.5.10 Bounds for symmetric trails

We have performed a pruned tree search for low-weight trails for widths 25 and 50 that result
in the lower bounds in Table 5.2. For b = 25, five rounds are sufficient to have no trails with
weight below the width. For b = 50, six rounds are sufficient to have no differential trails
with weight below the width. It can be observed that as the number of rounds grows, the
difference between width 25 and width 50 grows. We expect this effect to be similar for larger
widths.

Note that thanks to the Matryoshka structure, these bounds imply lower bounds for
symmetric trails for all larger widths. More specifically, a trail for w = 1 with weight W
corresponds with a trail for w = 2` with weight wW = 2`W .

48 / 78

5. The Keccak-f permutations Keccak

5.6 Solving CICO problems

There are several approaches to solving a CICO problem for Keccak-f . The most straight-
forward way is to use the Keccak-f specification to construct a set of algebraic equations in
a number of unknowns that represents the CICO problem and try to solve it. Thanks to the
simple algebraic structure of Keccak-f , constructing the algebraic equations is straightfor-
ward. A single instance of Keccak-f results in (nr − 1)b intermediate variables and about
as many equations. Each equation has algebraic degree 2 and involves about 31 variables.
Solving these sets of equations is however not an easy task. This is even the case for the toy
version Keccak-f [25] with lane length w = 1.

5.7 Strength in keyed mode

In keyed modes we must consider attack scenario’s such as explained in Section 4.7.5. Here
we see two main approaches to cryptanalysis. The first one is the exploitation of structural
distinguishers and the second one is an algebraic approach, similar to the one presented in
Section 5.6. A possible third approach is the intelligent combination of exploiting a structural
distinguisher and algebraic techniques. In our opinion, the strength in keyed modes depends
on the absence of good structural distinguishers and the difficulty of algebraically solving sets
of equations.

5.8 Symmetry weaknesses

Symmetry in the state could lead to properties similar to the complementation property.
Symmetry between the rounds could lead to slide attacks. We believe that the asymmetry
introduced by ι is sufficient to remove all exploitable symmetry from Keccak-f .

5.9 Experimental data

The Keccak-f permutations should have no propagation properties significantly different
from that of a random permutation. For the smallest Keccak-f version, Keccak-f [25],
it is possible to experimentally reconstruct significant parts of the distribution of certain
properties. In this section, we report on the results of such experiments.

As a reference, we have generated a pseudorandom permutation operating on 25 bits using
a simple algorithm from [37] taking input from a pseudorandom number generator based on a
cipher that is remote from Keccak and its inventors: RC6 [50]. We denote this permutation
by the term Perm-R.

5.9.1 Differential probability distributions

We have investigated the distribution of the cardinality of differentials for Keccak-f [25],
several reduced-round versions of Keccak-f [25] and of Perm-R. For these permutations, we
have computed the cardinalities of 241 differentials of type (a′, b′) where a′ ranges over 216

different non-zero input patterns and b′ over all 225 patterns. For Perm-R we just tested
the first (when considered as an integer) 216 non-zero input patterns. For the Keccak-f [25]

49 / 78

Keccak 5. The Keccak-f permutations

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

0 2 4 6 8 10 12 14

Figure 5.5: Cardinality histogram of sampling of Perm-R

variants we tested as input patterns the first 216 non-zero entries in the lookup table of
Perm-R.

In a random permutation the cardinality of differentials has a Poisson distribution with
λ = 1/2. This is studied and described among others in [24]. Moreover, [24] also determines
the distribution of the maximum cardinality of a large number of differentials over a random
permutation. According to [24, Section 5.2], the expected value of the maximum cardinality
over the 241 samples is 12 and the expected value of the maximum cardinality over all 250− 1
non-trivial differentials (a′, b′) is 14.

We provide in a sequence of diagrams the histograms obtained from these samplings,
indicating the envelope of the theoretical Poisson distribution for a random permutation
as a continuous line and the results of the measurements as diamond-shaped dots. We have
adopted a logarithmic scale in the y-axis to make the deviations stand out as much as possible.

Figure 5.5 shows that Perm-R exhibits a distribution that follows quite closely the theo-
retically predicted one. The maximum observed cardinality is 11.

Figure 5.6 shows the distribution for the two-round version of Keccak-f [25]: the distri-
bution deviates significantly from the theoretical Poisson distribution. Note that here also
the x-axis has a logarithmic scale. The largest cardinality encountered is 32768. It turns out
that these pairs are all in a single trail with weight 9. The number of pairs is equal to the
number of pairs predicted by the weight: 224−9 = 215. Note that there are 2-round trails with
weight 8 (see Table 5.2) but apparently no such trail was encountered in our sampling.

Figure 5.7 shows the distribution for the three-round version of Keccak-f [25]. The devi-
ation from the theoretical Poisson distribution is smaller. The largest cardinality encountered
is now 146. These pairs are all in a single trail with weight 17. The number of pairs is slightly
higher than the number of pairs predicted by the weight: 224−17 = 27. The 3-round trails
with weight 16 (see Table 5.2) were not encountered in our sampling.

Figure 5.8 shows the distribution for the four-round version of Keccak-f [25]. The sam-
pling does no longer allow to distinguish the distribution from that of a random permutation.

50 / 78

5. The Keccak-f permutations Keccak

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1 10 100 1000 10000 100000

Figure 5.6: Cardinality histogram of sampling of 2-round version of Keccak-f [25]

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

0 20 40 60 80 100 120 140 160

Figure 5.7: Cardinality histogram of sampling of 3-round version of Keccak-f [25]

51 / 78

Keccak 5. The Keccak-f permutations

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

0 2 4 6 8 10 12 14

Figure 5.8: Cardinality histogram of sampling of 4-round version of Keccak-f [25]

The largest cardinality encountered is now 12. These pairs are in 12 different trails with
weight ranging from 56 to 64. For the 4-round trails with weight 23 (see Table 5.2) it is not
clear whether they were encountered in our sampling: the expected number of pairs is only 2
and this may have gone unnoticed.

Finally, Figure 5.9 shows the distribution for the 12-round version of Keccak-f [25]. As
expected, the distribution is typical of a random permutation. The maximum cardinality
observed is 12.

5.9.2 Correlation distributions

We have investigated the distribution of the correlations for Keccak-f [25], of several reduced-
round versions of Keccak-f [25] and of Perm-R. For these permutations, we have computed
the correlations of 239 couples (v, u) where u ranges over 214 different non-zero output selection
patterns and v over all 225 patterns. For Perm-R we just tested the first (when considered as
an integer) 214 non-zero output selection patterns. For the Keccak-f [25] variants we tested
as output selection patterns the first 214 non-zero entries in the lookup table of Perm-R.

In a random permutation with width b the input-output correlations have a discrete
distribution enveloped by a normal distribution with σ2 = 2−b. This is studied and described
in [24]. Moreover, [24] also determines the distribution of the maximum correlation magnitude
of a large number of couples (v, u) over a random permutation. According to [24, Section 5.4],
the expected value of the maximum correlation magnitude over the 239 samples is 0.00123
and the expected value of the maximum correlation magnitude over all 250 − 1 non-trivial
correlations (v, u) is 0.0017.

We provide in a sequence of diagrams the histograms obtained from these samplings,
indicating the envelope of the theoretical normal distribution for a random permutation as
a continuous line and the results of the measurements as diamond-shaped dots. We have
adopted a logarithmic scale in the y-axis to make the deviations stand out as much as possible.

Figure 5.10 shows that Perm-R exhibits a distribution that follows quite closely the normal

52 / 78

5. The Keccak-f permutations Keccak

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

0 2 4 6 8 10 12 14

Figure 5.9: Cardinality histogram of sampling of Keccak-f [25]

envelope. At its tails the experimental distribution exhibits its discrete nature. Because it
is a permutation, the correlation can only be non-zero in values that are a multiple of 22−b.
For a given correlation value c that is a multiple of 22−b, the a priori distribution of the
corresponding value in the cryptogram is a Poisson distribution with λ given by the value of
the normal envelope in that point. The largest correlation magnitude observed is 0.001226,
quite close to the theoretically predicted value.

Figure 5.11 shows the distribution for the two-round version of Keccak-f [25]: the distri-
bution deviates significantly from the theoretical normal envelope. Additionally, it is zero for
all values that are not a multiple of 2−15 (rather than 2−23). This is due to the fact that the
Boolean component functions of Keccak-f [25] have only reached degree 4 after two rounds
(see Table 5.3), rather than full degree 24. The largest correlation magnitude encountered
is 0.03125 (outside the scale of the figure). This is the correlation magnitude 2−5 one would
obtain by a single linear trail with weight 10. The 2-round linear trails with weight 8 (see
Table 5.2) were apparently not encountered in our sampling.

Figure 5.12 shows the distribution for the three-round version of Keccak-f [25]: the
deviation from the theoretical normal envelope becomes smaller. This distribution is zero
for all values that are not a multiple of 2−18 due to the fact that the Boolean component
functions of Keccak-f [25] have only reached degree 8 after three rounds (see Table 5.3).
The largest correlation magnitude encountered is 0.003479. This is a correlation magnitude
that cannot be obtained by a single linear trail. The 3-round linear trails with weight 16
(see Table 5.2) would give correlation magnitude 2−8 ≈ 0.0039. It is quite possible that the
observed correlation value is the sum of the (signed) correlation contributions of some trails,
including one with weight 16 and some with smaller weight.

Figure 5.13 shows the distribution for the four-round version of Keccak-f [25]. The shape
of the distribution and the maximum values do no longer allow to distinguish the distribu-
tion from that of a random permutation. The largest correlation magnitude encountered is
0.001196. However, this distribution differs from that of a random permutation because it is

53 / 78

Keccak 5. The Keccak-f permutations

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

-0.0014 -0.0012 -0.001 -0.0008 -0.0006 -0.0004 -0.0002 0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014

Figure 5.10: Correlation histogram of sampling of Perm-R

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

-0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01

Figure 5.11: Correlation histogram of sampling of 2-round version of Keccak-f [25]

54 / 78

5. The Keccak-f permutations Keccak

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

-0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004

Figure 5.12: Correlation histogram of sampling of 3-round version of Keccak-f [25]

zero for all values that are not a multiple of 2−20 due to the fact that the Boolean component
functions of Keccak-f [25] have only reached degree 16 after four rounds (see Table 5.3).
After 5 rounds the distribution is zero for values that are not a multiple of 2−22 and only
after 6 rounds this becomes 2−23. This is consistent with Table 5.3.

Finally, Figure 5.14 shows the distribution for the 12-round version of Keccak-f [25]. As
expected, the distribution is typical of a random permutation. The maximum correlation
magnitude observed is 0.001226.

5.9.3 Algebraic normal form experiments

There are several ways to describe Keccak-f algebraically. One could compute the algebraic
normal form (ANF, see Section 4.2.3) with elements in GF(2), GF(25), GF(225) or GF(2w),
but given the bit-oriented structure and matching θ, ρ, π, ι and χ as operations in GF(2),
the ANF in GF(2) seems like a natural way to represent the Keccak-f permutation.

For instance, one could take the rows as variables in GF(25). This way, the χ opera-
tion applies independently per variable. However, the other operations will have a complex
expression.

5.9.3.1 Algebraic normal form of Keccak-f [25]

We performed a statistical test based on the ANF of Keccak-f [25] in GF(2), varying the
number of rounds from 1 to 12. The test consists in varying the 25 bits of input and counting
the number of monomials of degree d of all 25 output bits. The statistical test is performed
per degree independently. The number of monomials of degree d should be present in a ratio
of about one half. The test fails when the observed number of monomials is more than two
standard deviations away from the theoretical average. We look for the highest degree that
passes the test.

55 / 78

Keccak 5. The Keccak-f permutations

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

-0.0014 -0.0012 -0.001 -0.0008 -0.0006 -0.0004 -0.0002 0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014

Figure 5.13: Correlation histogram of sampling of 4-round version of Keccak-f [25]

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

-0.0014 -0.0012 -0.001 -0.0008 -0.0006 -0.0004 -0.0002 0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014

Figure 5.14: Correlation histogram of sampling of Keccak-f [25]

56 / 78

5. The Keccak-f permutations Keccak

Rounds Maximum degree to
pass test

Monomials exist up
to degree

1 (none) 2
2 1 4
3 6 8
4 14 16
5 22 22
6 23 24
7-12 24 24

Table 5.3: The ANF statistical test on Keccak-f [25]

Rounds Maximum degree to
pass test

Monomials exist up
to degree

1 (none) 2
2 (none) 3
3 (none) 5
4 5 9
5 16 17
6-18 25 25

Table 5.4: The ANF statistical test on Keccak-f [1600] varying slice z = 0

Note that the round function has only degree two and thus no monomial of degree higher
than 2i can appear after after i rounds.

The results are displayed in Table 5.3. Starting from 7 rounds, all monomials up to order
24 exist and appear with a fraction close to one half. Since Keccak-f [25] is a permutation,
the monomial of order 25 does not appear.

5.9.3.2 Algebraic normal form of Keccak-f [1600]

We performed two statistical tests based on the ANF of Keccak-f [1600] in GF(2), varying
the number of rounds. Since we obviously cannot vary all the 1600 input bits, we varied a
subset of them. In a first test, we varied the 25 bits of slice z = 0. In a second test, we varied
the 25 bits of coordinates (0, 0, z) for 0 ≤ z < 25. In both cases, the other 1575 bits are set
to zero.

We counted the total number of monomials of degree d that appear in all 1600 output
bits. The statistical test is performed per degree independently, in the same was as for
Keccak-f [25].

The results can be found in Tables 5.4 and 5.5. Extrapolating this to the full 1600-input-
bit ANF and assuming that it starts with a good set of monomials up to degree 16 at round 5,
like here, and then doubles for each additional round, we need at least 12 rounds to populate
a good set of monomials up to degree 1599.

In all cases, increasing the number of rounds by one every time the width of the permu-
tation doubles, as nr = 12 + `, compensates for the need to populate twice the monomial

57 / 78

Keccak 5. The Keccak-f permutations

Rounds Maximum degree to
pass test

Monomials exist up
to degree

1 (none) 2
2 (none) 4
3 (none) 8
4 8 15
5 25 25
6 24 25
7-18 25 25

Table 5.5: The ANF statistical test on Keccak-f [1600] varying 25 bits of lane x = y = 0

degrees while keeping extra rounds as a security margin.

5.9.4 Solving CICO problems algebraically

We did some attempts to solve a CICO problem algebraically using SAGE [1]. We wrote a
program that generates the round equations of Keccak-f for any width in a form that can be
used in SAGE. We defined a CICO problem for Keccak-f [25] where we fix the value of 16 bits
at its input and 9 bits at its output and tried to solve that with the tools available in SAGE.
We were able to solve instances of this problem for a reduced-round version Keccak-f [25]
with 2 rounds in a matter of minutes. Similar trials with a 3-round version caused SAGE to
run out of memory. We plan to make public our software for generating round equations so
that researchers can use SAGE or other computer algebra tools to attack Keccak-f .

5.9.5 Cycle distributions

We have determined the cycle structure of Keccak-f [25] and all its reduced-round versions.
Table 5.6 lists all cycles for Keccak-f [25] and Table 5.7 the number of cycles for all reduced-
round versions. For a random permutation, the expected value of the number of cycles is
ln(225) = 25 ln 2 ≈ 17.3. The average of Table 5.7 is 16.3.

It can be observed that Keccak-f [25] and all its reduced-round versions have an even
number of cycles. For a permutation operating on a domain with an even number of elements,
an even number of cycles implies that it is an even permutation [56], hence they are all even
permutations. Actually, it is easy to demonstrate that all members of the Keccak-f family
are even permutations. We do however not think this property can be exploited in an attack
or to build a usable distinguisher.

The members of the Keccak-f family are even permutations because the composition of
two even permutation is an even permutation and that all step mappings of Keccak-f are
even permutations. We cite here a number of arguments we found in [56, Lemma 2]:

• The mappings θ, π and ρ are linear. In fact all invertible linear transformations over Zb2
with b > 2 are even permutations. This follows from the fact that each invertible binary
matrix can be obtained from the identity matrix by elementary row transformations
(binary addition of one row to another row), and that these elementary row transfor-
mations (considered as linear mappings) are permutations with 2b−1 fixed points and
2b−2 cycles of length 2.

58 / 78

5. The Keccak-f permutations Keccak

18447749 147821 168 12
13104259 40365 27 3
1811878 2134 14 2

Table 5.6: Cycle lengths in Keccak-f [25]

rounds cycles rounds cycles rounds cycles
1 14 5 18 9 14
2 12 6 20 10 20
3 16 7 18 11 18
4 16 8 18 12 12

Table 5.7: Number of cycles in reduced-round versions of Keccak-f [25]

• The mapping ι consists of the addition of a constant. Addition of a constant in Zb2 is
the identity mapping if the constant is all-zero and has 2b−1 cycles of length 2 if the
constant is not all-zero.

• The mapping χ is an even permutation because it can be represented as a concatenation
of 5w permutations that carry out the χ mapping for one row and leave the other 5w−1
rows fixed. The cycle representation of each such permutation contains a number of
cycles that is a multiple of 225w−5 and hence even.

59 / 78

Keccak 5. The Keccak-f permutations

60 / 78

Chapter 6

Usage

This chapter discusses the Keccak sponge functions from a users’ point of view.

6.1 Usage scenario’s for a sponge function

6.1.1 Random-oracle interface

A sponge function has the same input and output interface as a random oracle: It accepts an
arbitrarily-long input message and produces an infinite output string that can be truncated
at the desired length. Unlike some other constructions, a sponge function does not have a
so called initial value (IV) that can be used as an additional input. Instead, any additional
input, such as a key or a diversifier, can be prepended to the input message, as one would do
with a random oracle.

6.1.2 Linking to the security claim

Basically, the security claim in [7, Section 3] specifies that any attacks on a member of the
Keccak family should have a complexity of order 2c/2 calls to Keccak-f , unless easier on a
random oracle.

For the first four Keccak candidates with fixed digest length, the output length n always
satisfies n ≤ c/2. This means that using Keccak as a hash function provides collision
resistance of 2n/2, (second) preimage resistance of 2n and resistance to length-extension.
Furthermore, for any fixed subset of m < n output bits, the same complexities apply with m
replacing n.

For the fifth candidate Keccak[] with its arbitrarily-long output mode, the idea is pretty
much the same, except that, for any attacks that would require more than 2c/2 = 2288 on a
random oracle, the attack may work on Keccak[] with a complexity of 2c/2 = 2288.

With a random oracle, one can construct a pseudo-random function (PRF) Fk(m) by
prepending the message m with a key k, i.e., Fk(m) = RO(k||m). In such a case, the
function behaves as a random function to anyone not knowing the key k but having access to
the same random oracle (see also Section 3.1.5). As a consequence of the security claim, the
same construction can be used with a Keccak sponge function and the same security can be
expected when the adversary does not have access to a complexity of order higher than 2c/2.

61 / 78

Keccak 6. Usage

Functionality Expression Input Output
n-bit hash function h = H(m) m bzcn
n-bit randomized hash function h = Hr(m) r||m bzcn
n-bit hash function instance differentiation h = Hd(m) d||m bzcn
n-bit MAC function t = MAC(k, [IV,]m) k||IV||m bzcn
Random-access stream cipher (n-bit block) zi = f(k, IV, i) k||IV||i bzcn
Stream cipher z = f(k, IV) k||IV as is
Mask generating and key derivation function mask = f(seed, l) seed bzcl
Deterministic random bit generator (DRBG) z = DRGB(seed) seed as is

Table 6.1: Examples of usage scenario’s for a sponge function

6.1.3 Examples of modes of use

In Table 6.1, we propose some possible modes of use of a sponge function.
The first five examples of Table 6.1 can be applied with any of the five Keccak candidates,

while the last three, as such, require the arbitrarily-long output mode of the fifth candidate
Keccak[] (although less natural constructions can be found on top of the fixed digest length
candidates).

An n-bit hash function can trivially be implemented using a sponge function, e.g., H(m) =
bKeccak[](m)cn. If the hash function is to be used in the context of randomized hashing, a
random value (i.e., the salt) can be prepended to the message, e.g., Hr(m) = bKeccak[](r||m)cn.
The same prepending idea applies if one needs to simulate independent different hash function
instances (hash function instance differentiation) and to compute a message authentication
code (MAC).

The random-access stream cipher works similarly to the Salsa20 family of stream ci-
phers [4]: It takes as input a key, a nonce and a block index and produces a block of key
stream. It can be used with the four fixed digest length variants of Keccak, with n the digest
length. It can also be used with the arbitrarily-long output mode of Keccak[], in which case
producing blocks of n = r bits of key stream is most efficient per application of Keccak-f .

A sponge function can also be used as a stream cipher. One can input the key and some
initial value and then get key stream in the squeezing phase.

Finally, a mask generating function, a key derivation function or a random bit generator
can be constructed with a sponge function by absorbing the seed data and then producing
the desired number of bits in the squeezing phase. Note that a deterministic random bit
generator may support the function of re-seeding, i.e., injecting new seed material without
throwing away its current state. This can be done by squeezing b final output bits, and then
starting a new sponge feeding it with these final output bits followed by the new seed.

6.2 Backward compatibility with old standards

6.2.1 Input block length and output length

Several standards that make use of a hash function assume it has an input block length and a
fixed output length. A sponge function supports inputs of any length and returns an output

62 / 78

6. Usage Keccak

of arbitrary length. When a sponge function is used in those cases, an input block length and
an output length must be chosen. We distinguish two cases.

• For the four SHA-3 candidates where the digest length is fixed, the input block length is
assumed to be the bitrate r and the output length is the digest length of the candidate
n ∈ {224, 256, 384, 512}.

• For the fifth SHA-3 candidate Keccak[], the output length n must be explicitly chosen
to fit a particular standard. Since the input block length is usually assumed to be
greater than or equal to the output length, the input block length can be taken as an
integer multiple of the bitrate, mr, to satisfy this constraint.

6.2.2 Initial value

Some constructions that make use of hash functions assume the existence of a so-called initial
value (IV) and use this as additional input. In the sponge construction the root state could
be considered as such an IV. However, for the security of the sponge construction it is crucial
that the root state is fixed and cannot be manipulated by the adversary. If Keccak sponge
functions are used in constructions that require it to have an initial value as supplementary
input, e.g., as in NMAC [3], this initial value shall just be pre-pended to the regular input.

6.2.3 HMAC

HMAC [3, 48] is fully specified in terms of a hash function, so it can be applied as such using
one of the Keccak candidates. It is parameterized by an input block length and an output
length, which we propose to choose as in Section 6.2.1 above.

Apart from length extension attacks, the security of HMAC comes essentially from the
security of its inner hash. The inner hash is obtained by prepending the message with the
key, which gives a secure MAC. The outer hash prepends the inner MAC with the key (but
padded differently), so again giving a secure MAC. (Of course, it is also possible to use the
generic MAC construction given in Section 6.1, which requires only one application of the
sponge function.)

From the security claim in [7, Section 3], a PRF constructed using HMAC shall resist a
distinguishing attack that requires much fewer than 2c/2 queries and significantly less com-
putation than a preimage attack.

6.2.4 NIST and other relevant standards

The following standards are based either generically on a hash function or on HMAC. In
all cases, at least one of the Keccak candidates can readily be used as the required hash
function or via HMAC.

• IEEE P1393 [29] requires a hash function for a key derivation function (X9.42) and a
mask generating function (MGF-hash). (Note that the MGF-hash construction could
be advantageously replaced by the arbitrarily-long output mode of Keccak[].)

• PKCS #1 [39] also requires a hash function for a mask generating function (MGF1).

• The key derivation functions in NIST SP 800-108 [49] rely on HMAC.

63 / 78

Keccak 6. Usage

• The key derivation functions in NIST SP 800-56a [45] are generically based on a hash
function.

• The digital signature standard (DSS) [42] makes use of a hash function with output
size of 160, 224 or 256 bits. Output truncation is permitted so any of the five Keccak
candidates can be chosen to produce the 160 bits of output.

• In the randomized hashing digital signatures of NIST SP 800-106 [44], the message is
randomized prior to hashing, so this is independent of the hash function used. (With a
sponge function, this can also be done by prepending the random value to the message.)

• The deterministic random bit generation (DRBG) in NIST SP 800-90 [46] is based
on either a hash function or on HMAC. (Maybe the arbitrarily-long output mode of
Keccak[] could be used for such an application.)

64 / 78

Chapter 7

Implementation

In this chapter, we discuss the implementation of Keccak in software and in hardware,
together with its estimated performances.

7.1 Bit and byte numbering conventions

As it impacts the reference implementation, the bit and byte numbering conventions are
defined in [7, Section 5.1]. In this section, we wish to detail our choices concerning the
mapping between the bits of the Keccak-f [b] permutation and their representation in terms
of w-bit CPU words and in the SHA-3 API defined by NIST [47].

As explained in [7, Section 1], the bits in the state are numbered from 0 to b− 1, and bit
i = z+w(5y+x) corresponds to the coordinates (x, y, z). From the software implementation
point of view, we expect the bits in a lane (i.e., with the same coordinates (x, y)) to be packed
together in a w-bit CPU word, so that, if the processor allows it, the operation ρ becomes a
set of CPU word rotations.

For the ρ operation to be translated into rotation instructions in the processor, the num-
bering z must be either an increasing or a decreasing function of the bit numbering in the
processor’s conventions. So, up to a constant offset, either z = 0 is the most significant bit
(MSB) and z = w − 1 is the least significant bit (LSB), or vice-versa.

The input bits of the hash function come through the Update function of the API, orga-
nized as a sequence of bytes. Within each block, the message bit i = ibit + 8ibyte is going to
be XORed with the state bit i. To avoid re-ordering bits or bytes and to allow a word-wise
XORing, the message bit numbering should follow the same convention as the state bit num-
bering. In particular, if z = 0 indicates the MSB (resp. LSB), ibyte = 0 should indicate the
most (resp. least) significant byte within a word.

Since the reference platform proposed by NIST follows the little-endian (LE) convention,
we adopt the following numbering of bits and bytes: When mapping a lane to a CPU word,
the bit z = 0 is the LSB. Within a CPU word, the byte ibyte = 0 is the least significant byte.
Within a byte, ibit = 0 is the LSB. This way, the message bits can be organized as a sequence
of words (except for the last bits), which can be XORed directly to the lanes of the state on
a LE processor.

The convention in the Update function is different, and this is the reason for applying the
formal bit reordering of [7, Section 5.1]. It formalizes the chosen translation between the two
conventions, while having an extremely limited impact on the implementation. In practice,

65 / 78

Keccak 7. Implementation

only the bits of the last byte (when incomplete) of the input message need to be shifted.

7.2 General aspects

For Keccak, the bulk of the processing is done by the Keccak-f permutation and by
XORing the message blocks into the state. For an input message of l bits, the number of
blocks to process, or in other words, the number of calls to Keccak-f , is given by:⌈

8b l8c+ 32
r

⌉
.

For an output length n smaller than or equal to the bitrate, the squeezing phase does not
imply any additional processing. However, in the arbitrarily-long output mode, the additional
number of calls to Keccak-f for an n-bit output is dnr e − 1.

In terms of memory usage, Keccak has no feedforward loop and the message block can
be directly XORed into the state. This limits the amount of working memory to the state,
the round number and some extra working memory for θ and χ. Five w-bit words of extra
working memory allow the implementation of θ to compute the XOR of the sheets, while they
can hold the five lanes of a plane when χ is computed.

7.3 Software implementation

We provide a reference and an optimized implementation of the Keccak candidates in ANSI
C. The file KeccakSponge.c is common to both flavors and implements the NIST API, in-
cluding the functions Init, Update, Final and Hash, plus the additional function Squeeze
(see [7, Section 5.2]).

The reference implementation calls the Keccak-f [1600] permutation written in Keccak-
PermutationReference.c, while the optimized one uses KeccakPermutationOptimized.c.
The permutation is implemented by the KeccakPermutation() function, while the permuta-
tion and the XOR is done at once in KeccakPermutationAfterXor().

In the case of the reference implementation, separate functions are provided for the θ, ρ,
π, χ and ι operations for readability purposes.

Additional files are provided, i.e., to produce known answer test results, to display in-
termediate values in the case of the reference implementation and to measure timings in the
optimized one.

7.3.1 Optimized for speed

An optimized version of Keccak has been written in ANSI C and tested under the following
platform.

• PC running Linux openSUSE 11.0 x86 64;

• CPU: Intel Xeon 5150 (CPU ID: 06F6) at 2.66GHz, dual core, with a bus at 1333MHz
and 4Mb of level-2 cache;

• Compiler: GCC 4.3.1 20080507 using gcc -O3 -g0 -march=nocona.

66 / 78

7. Implementation Keccak

Operation Performance
Keccak-f only 1600 cycles
Squeezing with r = 1024 12.5 cycles/byte
Squeezing with r = 512 25.0 cycles/byte
Keccak-f and XORing 1024 bits 1600 cycles
Absorbing with r = 1024 12.5 cycles/byte
Keccak-f and XORing 512 bits 1616 cycles
Absorbing with r = 512 25.3 cycles/byte

Table 7.1: Performance of the Keccak-f permutation and the XOR of the input block,
compiled on a 64-bit platform

Operation Performance
Keccak-f only 6824 cycles
Squeezing with r = 1024 53.3 cycles/byte
Squeezing with r = 512 106.6 cycles/byte
Keccak-f and XORing 1024 bits 6824 cycles
Absorbing with r = 1024 53.3 cycles/byte
Keccak-f and XORing 512 bits 6816 cycles
Absorbing with r = 512 106.5 cycles/byte

Table 7.2: Performance of the Keccak-f permutation and the XOR of the input block,
compiled using only 32-bit instructions

The code uses only plain C instructions, without assembly nor SIMD instructions. As
explained above, only the Keccak-f permutation, together with the XOR of a message
block, is implemented specifically for the optimized version. The permutation consists of a
loop, running 6 times three unrolled round functions. The operations in the round function
have been expanded in macros to allow some reordering of the instructions. We have tried to
manually interleave lines that apply on different variables to enable pipelining, while grouping
sets of lines that use a common precomputed value to avoid reloading the registers too often.

On the platform defined above, we have obtained the figures in Table 7.1. We have then
performed the same tests, but adding the option -m32 to the compiler to produce only 32-bit
code; the figures are in Table 7.2.

It is likely that the performance can be further improved, especially for 32-bit code. For
instance, one can find a better order of the C operations using profiling tools. Currently, the
same code is shared by the 32-bit and 64-bit optimized versions; allowing a different ordering
for each architecture could help. As a next step, one could optimize the code directly in
assembler. And finally, using SIMD instructions is discussed in Section 7.3.3.

There is no precomputation in the Init function (when the round constants and ρ offsets
are integrated into the code). The only constant overhead is taken by clearing the initial
state to zero in Init and padding the message in Final. We have measured the overhead
by timing the whole process from Init to Final with 1, 2, 3 and 10 blocks of data. The
number of cycles of the constant overhead, in the current implementation, is of the order of
200–250 cycles using 64-bit code and of the order 300–400 cycles using 32-bit code (for the

67 / 78

Keccak 7. Implementation

Operation Performance
Keccak-f only 2187 cycles
Squeezing with r = 1024 17.1 cycles/byte
Squeezing with r = 512 34.2 cycles/byte
Keccak-f and XORing 1024 bits 2187 cycles
Absorbing with r = 1024 17.1 cycles/byte
Keccak-f and XORing 512 bits 2205 cycles
Absorbing with r = 512 34.4 cycles/byte

Table 7.3: Performance of the Keccak-f permutation and the XOR of the input block,
compiled on the 64-bit reference platform

Operation Performance
Keccak-f only 10197 cycles
Squeezing with r = 1024 79.6 cycles/byte
Squeezing with r = 512 159.3 cycles/byte
Keccak-f and XORing 1024 bits 10278 cycles
Absorbing with r = 1024 80.3 cycles/byte
Keccak-f and XORing 512 bits 10215 cycles
Absorbing with r = 512 159.6 cycles/byte

Table 7.4: Performance of the Keccak-f permutation and the XOR of the input block,
compiled on the 32-bit reference platform

whole message).

7.3.2 Reference platform

Using the same C code as in Section 7.3.1, we have performed measurement on the following
platform. The results are displayed in Tables 7.3 and 7.4.

• PC running Vista Ultimate x86 or x64, version 6.0.6001, SP1 build 6001;

• CPU: Intel Core2 Duo E6600 at 2.4GHz;

• For x86:

– Microsoft Visual Studio 2008 Version 9.0.21022.8 RTM,

– 32-bit C/C++ Optimizing Compiler Version 15.00.21022.08 for 80x86;

• For x64:

– Microsoft Visual Studio 2008 version 9.0.30428.1 SP1Beta1,

– Microsoft Windows SDK 6.1 Targeting Windows Server 2008 x64,

– C/C++ Optimizing Compiler Version 15.00.21022.08 for x64, using cl /O2 /Ot
/favor:INTEL64.

68 / 78

7. Implementation Keccak

Although the performance displayed here is slower than that of Section 7.3.1, we think
that the figures of Section 7.3.1 are also relevant to the reference platform proposed by NIST.
The reasons are as follows. First, the Intel Xeon 5150 [16] is identical in terms of CPU
ID, number of cores, core stepping and level-2 cache size as the Intel Core 2 Duo Processor
E6600 (2.4GHz) [14]. The clock speed differs, but the figures are expressed in clock cycles.
Second, the operating system should not have an impact on the performance of Keccak
as the algorithm does not use any OS services. Finally, the compiler should not have an
impact on the intrinsic speed of Keccak on a given CPU, as a developer can always take the
assembly code produced by one compiler and use it as in-line assembly on the other (although
we did not do this exercise explicitly).

7.3.3 Using SIMD instructions

The reference platform CPU, as well as other members of the family, propose single instruc-
tion multiple data (SIMD) instruction sets known as MMX, SSE and their successors. These
include bitwise operations on 64-bit and 128-bit registers. Due to the symmetry of the op-
erations in Keccak-f , we think that the performance of Keccak can benefit from these
instruction sets. Due to the size of the registers, we expect the relative benefit to be higher
for 32-bit code than for 64-bit code.

For instance, the pandn instruction performs the AND NOT operation bitwise on 128-bit
registers (or one register and one memory location), which can be used to implement χ. Such
an instruction replaces four 64-bit instructions or eight 32-bit instructions.

Similarly, the pxor instruction computes the XOR of two 128-bit registers (or one register
and one memory location), replacing two 64-bit XORs or four 32-bit XORs.

7.3.4 Protection against side channel attacks

If the input to Keccak includes secret data or keys, side channel attacks may pose a
threat. One can protect against timing attacks and simple power analysis by coding the
Keccak-f permutation as a fixed sequence of instructions in a straightforward way. More-
over, Keccak-f does not make use of large lookup tables so that cache attacks pose no
problem.

Protection against differential power analysis (DPA) can be obtained by applying several
mechanisms, preferably at the same time. One of the mechanisms is called state splitting.
This method was proposed in [27] and [12] and consists in splitting the state in two parts—one
of which is supposed to be random—that give XORed back the actual state value. If properly
implemented, this method eliminates any correlation between values inside the machine and
any intermediate computation result, thereby removing the possibility for first-order DPA.
We have shown how this can be applied to BaseKing in [21]. It turns out that for the linear
steps the computations can be done independently on the two split parts of the state. An
additional overhead is in the non-linear steps, in which operations must be performed using
parts of both split states. The mechanisms described in [21] apply equally well to χ, the only
non-linear part of Keccak-f .

7.3.5 Estimation on 8-bit processors

We have estimated the performance of Keccak on the Intel 8051 microprocessor. The 8051
is an 8-bit processor equipped with an 8-bit data bus and a 16-bit address bus. Initially

69 / 78

Keccak 7. Implementation

Step Performance
θ 25920 cycles
ρ 15606 cycles
π 0 cycles
χ 22536 cycles
ι 288 cycles
Words re-ordering 11250 cycles
Total 75600 cycles

Table 7.5: Performance estimates of the Keccak-f [1600] permutation on the
8XC51RA/RB/RC

the 8051 could only address 128 bytes of internal RAM memory, but later versions were
released to allow accessing more internal RAM using a technique called Expanded RAM [15].
Nowadays many manufacturers propose variants of the original 8051 with various levels of
improvements, including even more powerful addressing modes, security features and shorter
instruction cycles. The variant we have selected for our estimation is the 80C51RA/RB/RC
microcontroller from Intel [13], with 512 bytes of on-chip RAM, split in 3 segments: 128 bytes
of low internal RAM (direct and indirect access), 128 bytes of high internal RAM (indirect
access only), and finally 256 bytes of external RAM (indirect access only).

The first problem to solve when implementing Keccak on such a constrained platform
like the 80C51RA/RB/RC is the memory mapping. The performance of memory accesses
depends on which memory segment is addressed, and so a careful mapping must be done
to ensure that most operations are done in the low internal segment. This is particularly
difficult for θ for which in-place evaluation requires additional temporary storage. However
by following a tight schedule of operations, it is possible to maintain the complete state of
Keccak in internal RAM, hence maximizing the performance.

Another problem is the implementation of 64-bit rotations in ρ using 8-bit rotate oper-
ations. At first the 8051 does not offer specific instructions to optimize this step, and so
rotations are merely done by iterating several times rotate-through-carry instructions (with
the exception of 4-bits rotation which can be done by swapping the byte digits). However
using efficient memory transfer instructions like XCH that exchanges the accumulator with a
byte in memory, it is actually possible to reduce the average number of cycles for rotation to
only 4.3 cycles/byte.

The performance estimates for Keccak including the details for each step are given in
Table 7.5, for 18 rounds. One cycle refers to the number of controller clock oscillation periods,
which is 12 in the case of our selected variant. It must be noted that the figures are the result
of a best-effort paper exercise. Figures for an actual implementation might vary, in particular
if it uses specific manufacturer improvements available on the platform.

7.4 Hardware implementation

In this section we highlight the characteristics of Keccak when implemented in hardware.
It is possible to design different architectures of Keccak. We will start describing the high-
speed core design depicted in Figure 7.1. This is based on the plain instantiation of the

70 / 78

7. Implementation Keccak

Figure 7.1: The high-speed core

combinational logic for computing one round, and use it iteratively. One of the benefits of
the proposed algorithm is that, unless intentionally forced, a general architecture can easily
support the four digest lengths, and contrary to the HMAC case, no additionally circuitry is
needed for supporting MAC or other functionality as KDF, MGF and similar.

7.4.1 High-speed core

The core is composed of three main components: the round function, the state register and
the input/output buffer. The use of the input/output buffer allows decoupling the core from
a typical bus used in a system-on-chip (SoC). These buses typically come in widths of 8, 16,
32, 64 or 128 bits. We have decided to fix its width to 64 bits. When the bitrate is equal
to 1024 bits the throughput of the bus is almost saturated when processing long messages.
Thus in this configuration the core will be capable of processing 128 bytes in 18 clock cycles.
If the bitrate is reduced to 512 bits, the elaboration time remains the same but the amount
of input is reduced by half.

The I/O buffer allows the core to compute the absorbing phase while the words of the
next block are transferred through the bus. With bitrate 1024 and a bus width smaller than
64, e.g., the common value 32, the throughput of the hash engine would be bounded by the
throughput of the bus.

The high-speed core has been coded in VHDL, test benches for the permutation and the
hash function are provided together with C code allowing the generation of test vectors for
the test benches. The core has been tested using ModelSim tools. In order to evaluate the

71 / 78

Keccak 7. Implementation

silicon area and the clock frequency, the core has been synthesized using Synopsys Design
Compiler and a 130 nm general purpose ST technology library, worst case 105◦C. The core
can reach a clock frequency of 500MHz, implying a throughput of 28.4 Gbit/s for bitrate
1024. Note that the 130 nanometer technology is relatively old; the use of newer technology,
such as 65 nm, will very likely allow the core to reach a clock frequency of 1GHz or above.

The area needed for having the core running at this frequency is 48 kgate, composed of
19 kgate for the round function, 9 kgate for the I/O buffer and 21 kgate for the state register
and control logic. The critical path of the combinatorial logic of the round function is only
1.1 ns.

For more details on the VHDL, refer to the readme.txt file in the VHDL directory.

7.4.2 Variants of the high-speed core

The high-speed core can be modified to optimize for different aspects.
In many systems the clock frequency is fixed for the entire chip. So even if the hash core can

reach a high frequency it has to be clocked at a lower frequency. In such a scenario Keccak
allows to instantiate two, three or even six rounds in combinatorial logic and compute them
in one clock cycle.

In the high-speed core we have decided to instantiate a separate buffer for the input/output
functions. This allows to run the absorbing phase while the bus is transferring the next
block to be processed. An alternative for saving area is to execute the storing of the words
composing the block directly in the state register. This alternative allows to save about 8
kgate and decreases the throughput to 15 Gbit/s at 500MHz, which is still a considerably
high value.

For a further reduction of the silicon area it is possible to compute one round in more
than one clock cycle. Thanks to the bit slice approach a minimalist architecture could be
made composed by the state register, with hardwired the π and ρ transformation, and the
logic and registers for computing first θ at bit level and after π and ρ, χ at bit level.

7.4.3 Low-area coprocessor

The core presented in Section 7.4.1 operates in a stand-alone fashion. The input block is
transferred to the core, and the core does not use other resources of the system for performing
the computation. The CPU can program a direct memory access (DMA) for transferring
chunks of the message to be hashed, and the CPU can be assigned to a different task while
the core is computing the hash. A different approach can be taken in the design of the
hardware accelerator: the core can use the system memory instead of having all the storage
capabilities internally. The state of Keccak will be stored in memory and the coprocessor is
equipped with registers for storing only temporary variables.

This is depicted in figure 7.2 where memory buffer labeled with A is reserved for the state,
and B is reserved for temporary values. The width of the data bus for performing memory
access could be of different width, we consider it of 64 bits as a first assumption, and later
considerations are reported if the width is smaller.

Internally the coprocessor is divided in two parts, a finite state machine (FSM) and a
data path. The data path is equipped with 3 registers for storing temporary values. The
FSM computes the address to be read and set the control signals of the data path. The
round is computed in different phases. First the sheet parities are computed, and the 5

72 / 78

7. Implementation Keccak

Figure 7.2: The low area coprocessor

73 / 78

Keccak 7. Implementation

lanes are stored in a dedicated area of the memory. The second phase consists in computing
the θ transformation, reading all the lanes of the state, and computing the XOR with the
corresponding sheet parities. After computing a lane in this way, it is rotated according
to ρ and written to the position defined by π. Now the intermediate state is completely
stored in the buffer B. The last step is to compute χ and add the round constant, ι, to
the lane in position (0, 0). For doing this the coprocessor reads 3 lanes of a plane from the
intermediate state, computes χ and writes the result to the buffer A, reads another element
of the intermediate value and writes the new χ, and so on for the 5 elements of the plane.

The computation of the Keccak-f permutation takes 3870 clock cycles, every round
requires 215 clock cycles, and 55 out of these are bubbles where the core is computing internally
and not transferring data to or from the memory.

In a variant with 32-bit memory words rather than 64-bit words, the number of clock
cycles doubles but only for the part relative to read and write, not for the bubbles. In such
an implementation the Keccak-f permutation will require 6750 clock cycles.

The buffer A, where the input of the permutation is written and where the output of the
permutation is written and the end of the computation, is composed of 200 bytes, while the
memory space for storing temporary values is composed of 240 bytes.

The low-area coprocessor has been coded in VHDL and simulated using Modelsim. As
the core depicted in Section 7.4.1, the coprocessor has been synthesized using ST technology
at 130 nm. The core requires 6 kgate, 1 kgate is needed for the registers. The coprocessor
can run up to 100Mhz.

This kind of coprocessor is suitable for smart cards or wireless sensor network where area
is particularly important since it determines the cost of the device and there is not a rich
operating system allowing to run different processes in parallel.

7.4.4 Protection against side channel attacks

Due to the simplicity of the round logic, and the use of simple 2-input gates, it is possible
to use logic gates resistant to power analysis, like WDDL [54] or SecLib [28]. These types
of logic are evolutions of the dual rail logic, where a bit is coded using two lines in such a
way that all the logic gates consume the same amount of energy independently of the values.
Additionally, the fact that the non-linear component of Keccak-f is limited to binary AND
gates, it lends itself very well for the very powerful protection techniques based on secret
sharing proposed in [51] that can offer effective protection against glitches.

74 / 78

Bibliography

[1] SAGE mathematical software, http://www.sagemath.org/.

[2] T. Baignères, J. Stern, and S. Vaudenay, Linear cryptanalysis of non binary ciphers,
Selected Areas in Cryptography (C. M. Adams, A. Miri, and M. J. Wiener, eds.), Lecture
Notes in Computer Science, vol. 4876, Springer, 2007, pp. 184–211.

[3] M. Bellare, R. Canetti, and H. Krawczyk, Keying hash functions for message authentica-
tion, Advances in Cryptology – Crypto ’96 (N. Koblitz, ed.), LNCS, no. 1109, Springer-
Verlag, 1996, pp. 1–15.

[4] D. J. Bernstein, The Salsa20 family of stream ciphers, 2007, Document ID:
31364286077dcdff8e4509f9ff3139ad, http://cr.yp.to/papers.html#salsafamily.

[5] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, RadioGatún, a belt-and-
mill hash function, Second Cryptographic Hash Workshop, Santa Barbara, August 2006,
http://radiogatun.noekeon.org/.

[6] , Sponge functions, Ecrypt Hash Workshop 2007, May 2007, also available as pub-
lic comment to NIST from http://www.csrc.nist.gov/pki/HashWorkshop/Public_
Comments/2007_May.html.

[7] , Keccak specifications, NIST SHA-3 Submission, October 2008, http://
keccak.noekeon.org/.

[8] , On the indifferentiability of the sponge construction, Advances in Cryptology
– Eurocrypt 2008 (N. P. Smart, ed.), Lecture Notes in Computer Science, vol. 4965,
Springer, 2008, http://sponge.noekeon.org/, pp. 181–197.

[9] E. Biham, O. Dunkelman, and N. Keller, The rectangle attack - rectangling the ser-
pent, Advances in Cryptology – Eurocrypt 2001 (B. Pfitzmann, ed.), Lecture Notes in
Computer Science, vol. 2045, Springer, 2001, pp. 340–357.

[10] C. Bouillaguet and P.-A. Fouque, Analysis of the collision resistance of RadioGatún
using algebraic techniques, Selected Areas in Cryptography, Lecture Notes in Computer
Science, vol. 4876, Springer, 2008, to appear.

[11] R. Canetti, O. Goldreich, and S. Halevi, The random oracle methodology, revisited, Pro-
ceedings of the 30th Annual ACM Symposium on the Theory of Computing, ACM Press,
1998, pp. 209–218.

75 / 78

http://www.sagemath.org/
http://cr.yp.to/papers.html#salsafamily
http://radiogatun.noekeon.org/
http://www.csrc.nist.gov/pki/HashWorkshop/Public_Comments/2007_May.html
http://www.csrc.nist.gov/pki/HashWorkshop/Public_Comments/2007_May.html
http://keccak.noekeon.org/
http://keccak.noekeon.org/
http://sponge.noekeon.org/

Keccak BIBLIOGRAPHY

[12] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, Towards sound approaches to counteract
power-analysis attacks, Advances in Cryptology – Crypto ’99 (M. J. Wiener, ed.), Lecture
Notes in Computer Science, vol. 1666, Springer, 1999, pp. 398–412.

[13] Intel Corporation, Intel 8XC51RA/RB/RC hardware description, http://www.intel.
com/design/mcs51/manuals/272668.htm.

[14] , Intel R© CoreTM2 Duo Desktop Processor E6600, http://processorfinder.
intel.com/details.aspx?sSpec=SL9S8.

[15] , Intel MCS 51/251 microcontrollers - expanded RAM, http://www.intel.com/
design/mcs51/er_51.htm.

[16] , Intel R© Xeon R© Processor 5150, http://processorfinder.intel.com/
details.aspx?sSpec=SL9RU.

[17] D. A. Cox, J. B. Little, and D. O’Shea, Ideals, varieties, and algorithms, third ed.,
Springer, 2007.

[18] J. Daemen, Cipher and hash function design strategies based on linear and differential
cryptanalysis, PhD thesis, K.U.Leuven, 1995.

[19] J. Daemen and C. S. K. Clapp, Fast hashing and stream encryption with PANAMA, Fast
Software Encryption 1998 (S. Vaudenay, ed.), LNCS, no. 1372, Springer-Verlag, 1998,
pp. 60–74.

[20] J. Daemen, L. R. Knudsen, and V. Rijmen, The block cipher Square, Fast Software
Encryption 1997 (E. Biham, ed.), Lecture Notes in Computer Science, vol. 1267, Springer,
1997, pp. 149–165.

[21] J. Daemen, M. Peeters, and G. Van Assche, Bitslice ciphers and power analysis attacks,
in Schneier [53], pp. 134–149.

[22] J. Daemen, M. Peeters, G. Van Assche, and V. Rijmen, Nessie proposal: the block cipher
noekeon, Nessie submission, 2000, http://gro.noekeon.org/.

[23] J. Daemen and V. Rijmen, The design of Rijndael — AES, the advanced encryption
standard, Springer-Verlag, 2002.

[24] , Probability distributions of correlation and differentials in block ciphers, Journal
of Mathematical Cryptology 1 (2007), no. 3, 221–242.

[25] E. Filiol, A new statistical testing for symmetric ciphers and hash functions, Proc. In-
formation and Communications Security 2002, volume 2513 of LNCS, Springer, 2002,
pp. 342–353.

[26] G. Gielen and J. Figueras (eds.), 2004 design, automation and test in Europe confer-
ence and exposition (DATE 2004), 16-20 February 2004, Paris, France, IEEE Computer
Society, 2004.

[27] L. Goubin and J. Patarin, DES and differential power analysis (the duplication method),
CHES (Ç. K. Koç and C. Paar, eds.), Lecture Notes in Computer Science, vol. 1717,
Springer, 1999, pp. 158–172.

76 / 78

http://www.intel.com/design/mcs51/manuals/272668.htm
http://www.intel.com/design/mcs51/manuals/272668.htm
http://processorfinder.intel.com/details.aspx?sSpec=SL9S8
http://processorfinder.intel.com/details.aspx?sSpec=SL9S8
http://www.intel.com/design/mcs51/er_51.htm
http://www.intel.com/design/mcs51/er_51.htm
http://processorfinder.intel.com/details.aspx?sSpec=SL9RU
http://processorfinder.intel.com/details.aspx?sSpec=SL9RU
http://gro.noekeon.org/

BIBLIOGRAPHY Keccak

[28] S. Guilley, P. Hoogvorst, Y. Mathieu, R. Pacalet, and J. Provost, CMOS structures
suitable for secured hardware, in Gielen and Figueras [26], pp. 1414–1415.

[29] IEEE, P1363-2000, standard specifications for public key cryptography, 2000.

[30] A. Joux, Multicollisions in iterated hash functions. Application to cascaded constructions,
Advances in Cryptology – Crypto 2004 (M. Franklin, ed.), LNCS, no. 3152, Springer-
Verlag, 2004, pp. 306–316.

[31] J. Kelsey, T. Kohno, and B. Schneier, Amplified boomerang attacks against reduced-round
mars and serpent, in Schneier [53], pp. 75–93.

[32] J. Kelsey and B. Schneier, Second preimages on n-bit hash functions for much less than
2n work, Advances in Cryptology – Eurocrypt 2005 (R. Cramer, ed.), LNCS, no. 3494,
Springer-Verlag, 2005, pp. 474–490.

[33] D. Khovratovich, Two attacks on RadioGatún, 9th International Conference on Cryptol-
ogy in India, 2008, to appear.

[34] L. Knudsen, C. Rechberger, and S. Thomsen, Grindahl - a family of hash functions, Fast
Software Encryption 2007 (A. Biryukov, ed.), LNCS, Springer-Verlag, 2007, pp. 39–47.

[35] L. R. Knudsen, Truncated and higher order differentials, Fast Software Encryption 1994
(B. Preneel, ed.), Lecture Notes in Computer Science, vol. 1008, Springer, 1994, pp. 196–
211.

[36] L. R. Knudsen and V. Rijmen, Known-key distinguishers for some block ciphers, Ad-
vances in Cryptology – Asiacrypt 2007, 2007, pp. 315–324.

[37] D. E. Knuth, The art of computer programming, vol. 2, third edition, Addison-Wesley
Publishing Company, 1998.

[38] T. Kohno and J. Kelsey, Herding hash functions and the Nostradamus attack, Advances
in Cryptology – Eurocrypt 2006 (S. Vaudenay, ed.), LNCS, no. 4004, Springer-Verlag,
2006, pp. 222–232.

[39] RSA Laboratories, PKCS # 1 v2.1 RSA Cryptography Standard, 2002.

[40] S. K. Langford and M. E. Hellman, Differential-linear cryptanalysis, Advances in Cryp-
tology – Crypto ’94 (Y. Desmedt, ed.), Lecture Notes in Computer Science, vol. 839,
Springer, 1994, pp. 17–25.

[41] U. Maurer, R. Renner, and C. Holenstein, Inidifferentiability, impossibility results on
reductions, and applications to the random oracle methodology, Theory of Cryptography
- TCC 2004 (M. Naor, ed.), Lecture Notes in Computer Science, no. 2951, Springer-
Verlag, 2004, pp. 21–39.

[42] NIST, Federal information processing standard 186-3, digital signature standard (DSS),
March 2006.

[43] , Announcing request for candidate algorithm nominations for a new cryptographic
hash algorithm (SHA-3) family, Federal Register Notices 72 (2007), no. 212, 62212–
62220, http://csrc.nist.gov/groups/ST/hash/index.html.

77 / 78

http://csrc.nist.gov/groups/ST/hash/index.html

Keccak BIBLIOGRAPHY

[44] , NIST special publication 800-106 draft, randomized hashing digital signatures,
July 2007.

[45] , NIST special publication 800-56a, recommendation for pair-wise key establish-
ment schemes using discrete logarithm cryptography (revised), March 2007.

[46] , NIST special publication 800-90, recommendation for random number generation
using deterministic random bit generators (revised), March 2007.

[47] , ANSI C cryptographic API profile for SHA-3 candidate algorithm submissions,
revision 5, February 2008, available from http://csrc.nist.gov/groups/ST/hash/
sha-3/Submission_Reqs/crypto_API.html.

[48] , Federal information processing standard 198, the keyed-hash message authenti-
cation code (HMAC), July 2008.

[49] , NIST special publication 800-108, recommendation for key derivation using pseu-
dorandom functions, April 2008.

[50] R. L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L. Yin, The RC6 block cipher, AES
proposal, August 1998.

[51] M. Schlaeffer, Masking non-linear functions based on secret sharing, Echternach Sym-
metric Cryptography seminar, 2008, http://wiki.uni.lu/esc/.

[52] B. Schneier, Applied cryptography, second ed., John Wiley & Sons, 1996.

[53] B. Schneier (ed.), Fast software encryption, 7th international workshop, fse 2000, new
york, ny, usa, april 10-12, 2000, proceedings, Lecture Notes in Computer Science, vol.
1978, Springer, 2001.

[54] K. Tiri and I. Verbauwhede, A logic level design methodology for a secure DPA resistant
ASIC or FPGA implementation, in Gielen and Figueras [26], pp. 246–251.

[55] D. Wagner, The boomerang attack, Fast Software Encryption 1999 (L. R. Knudsen, ed.),
Lecture Notes in Computer Science, vol. 1636, Springer, 1999, pp. 156–170.

[56] R. Wernsdorf, The round functions of Rijndael generate the alternating group, Fast Soft-
ware Encryption 2002 (J. Daemen and V. Rijmen, eds.), Lecture Notes in Computer
Science, vol. 2365, Springer, 2002, pp. 143–148.

[57] Wikipedia, Cryptographic hash function, 2008, http://en.wikipedia.org/wiki/
Cryptographic_hash_function.

[58] , Impossible differential cryptanalysis, 2008, http://en.wikipedia.org/wiki/
Miss_in_the_middle_attack.

[59] , Random permutation statistics, 2008, http://en.wikipedia.org/wiki/
Random_permutation_statistics.

[60] M. R. Z’aba, H. Raddum, M. Henricksen, and E. Dawson, Bit-pattern based integral
attack, Fast Software Encryption 2008 (K. Nyberg, ed.), Lecture Notes in Computer
Science, vol. 5086, Springer, 2008, pp. 363–381.

78 / 78

http://csrc.nist.gov/groups/ST/hash/sha-3/Submission_Reqs/crypto_API.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Submission_Reqs/crypto_API.html
http://wiki.uni.lu/esc/
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Miss_in_the_middle_attack
http://en.wikipedia.org/wiki/Miss_in_the_middle_attack
http://en.wikipedia.org/wiki/Random_permutation_statistics
http://en.wikipedia.org/wiki/Random_permutation_statistics

	Introduction
	NIST requirements
	Acknowledgments

	Design rationale summary
	Choosing the sponge construction
	Choosing an iterated permutation
	Designing the Keccak-f permutations
	Choosing the parameter values

	The sponge construction
	Security of the sponge construction
	Indifferentiability from a random oracle
	Indifferentiability of multiple sponge functions
	Immunity to generic attacks
	Randomized hashing
	Keyed modes

	Rationale for the padding
	Sponge input preparation
	Multi-capacity property
	Digest-length dependent digest

	Parameter choices
	Capacity
	Width
	The default sponge function Keccak[]

	The four critical operations of a sponge
	Definitions
	The operations

	Sponge functions with an iterated permutation
	The philosophy
	There should be no better attacks than generic attacks
	The impossibility of implementing a random oracle
	The choice between a permutation and a transformation
	The choice of an iterated permutation

	Some structural distinguishers
	Differential cryptanalysis
	Linear cryptanalysis
	Algebraic expressions
	The constrained-input constrained-output (CICO) problem
	Multi-block CICO problems
	Cycle structure

	Inner collision
	Exploiting a differential trail
	Exploiting a differential
	Truncated trails and differentials

	Path to an inner state
	Detecting a cycle
	Binding an output to a state
	Classical hash function criteria
	Collision resistance
	Preimage resistance
	Second preimage resistance
	Length extension
	Pseudo-random function
	Output subset properties

	The Keccak-f permutations
	Translation invariance
	The Matryoshka structure
	The step mappings of Keccak-f
	Properties of chi
	Properties of theta
	Properties of pi
	Properties of rho
	Properties of iota
	The order of steps within a round

	Choice of parameters: the number of rounds
	Differential and linear cryptanalysis
	Trail propagation
	The Matryoshka consequence
	The column parity kernel
	One and two-round trails
	Three-round trails: kernel vortices
	Beyond three-round trails: choice of
	Truncated trails and differentials
	Other group operations
	Differential and linear cryptanalysis variants
	Bounds for symmetric trails

	Solving CICO problems
	Strength in keyed mode
	Symmetry weaknesses
	Experimental data
	Differential probability distributions
	Correlation distributions
	Algebraic normal form experiments
	Solving CICO problems algebraically
	Cycle distributions

	Usage
	Usage scenario's for a sponge function
	Random-oracle interface
	Linking to the security claim
	Examples of modes of use

	Backward compatibility with old standards
	Input block length and output length
	Initial value
	HMAC
	NIST and other relevant standards

	Implementation
	Bit and byte numbering conventions
	General aspects
	Software implementation
	Optimized for speed
	Reference platform
	Using SIMD instructions
	Protection against side channel attacks
	Estimation on 8-bit processors

	Hardware implementation
	High-speed core
	Variants of the high-speed core
	Low-area coprocessor
	Protection against side channel attacks

