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Guido Bertoni1, Joan Daemen1, Michaël Peeters2, and Gilles Van Assche1

1 STMicroelectronics
2 NXP Semiconductors

Abstract. This paper proposes a new construction for the generation of
pseudo-random numbers. The construction is based on sponge functions
and is suitable for embedded security devices as it requires few resources.
We propose a model for such generators and explain how to define one on
top of a sponge function. The construction is a novel way to use a sponge
function, and inputs and outputs blocks in a continuous fashion, allowing
to interleave the feed of seeding material with the fetch of pseudo-random
numbers without latency. We describe the consequences of the sponge
indifferentiability results to this construction and study the resistance
of the construction against generic state recovery attacks. Finally, we
propose a concrete example based on a member of the Keccak family
with small width.
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1 Introduction

In various cryptographic applications and protocols, random numbers are used
to generate keys or unpredictable challenges. While randomness can be extracted
from a physical source, it is often necessary to provide many more bits than the
entropy of the physical source. A pseudo-random number generator (PRNG)
provides a way to do so. It is initialized with a seed, generated in a secret or
truly random way, and it then expands the seed into a sequence of bits.

For cryptographic purposes, it is required that the generated bits cannot be
predicted, even if subsets of the sequence are revealed. In this context, a PRNG
is pretty similar to a stream cipher. If the key is unknown, it must be infeasible
to infer anything on the key stream, even if it is partially known.

The state of the PRNG must have sufficient entropy, from the point of view
of the adversary, so that the prediction of the output bits cannot rely on simply
guessing the state. Hence, the seeding material must provide sufficient entropy.
Physical sources of randomness usually provide seeding material with relatively
low entropy rate due to imbalance of or correlations between bits. To increase
entropy, one may use the seeding material from several randomness sources.
However, this entropy must be transferred to the finite state of the PRNG.
Hence, we need a way to gather and combine seeding material coming from
several sources into the state of the PRNG. Loading different seeds into the



PRNG shall result in different output sequences. The latter implies that different
seeds result in different state values. In this respect, a PRNG is similar to a
cryptographic hash function that should be collision-resistant.

It is convenient for a pseudo-random number generator to be reseedable, i.e.,
one can bring an additional source of entropy after pseudo-random bits have been
generated. Instead of throwing away the current state of the PRNG, reseeding
combines the current state of the generator with the new seeding material. From
a user’s point of view, a reseedable PRNG can be seen as a black box with an
interface to request pseudo-random bits and an interface to provide fresh seeds.

The remainder of this paper is organized as follows. We continue our introduc-
tion with the advantages and limitations of our construction and an illustrative
example of a pseudo-random number generator mode of a hash function. We
then define the reference model of a reseedable PRNG in Section 2 and specify
and motivate our sponge-based construction in Section 3. We discuss the security
aspects of our proposal in Section 4 and provide a concrete example in Section 5.

1.1 Advantages and limitations of our construction

With their variable-length input and variable-length output, sponge functions
combine in a unified way the functionality of hash functions and stream ciphers.
They make therefore a natural candidate for building PRNGs, taking the seeding
material as input and producing a sequence of pseudo-random bits as output.

In this paper, we provide a clean and efficient way to construct a reseed-
able PRNG with a sponge function. The main idea is to integrate in the same
construction the combination of the various sources of seeding material and the
generation of pseudo-random output bits. The only requirement for seeding ma-
terial is to be available as bit sequences, which can be presented as such without
any additional preprocessing. So both seeding and random generation can work
in a continuous fashion, making the implementation simple and avoiding extra
iterations when providing additional seeding material.

In the context of an embedded security device, the efficiency and the sim-
plicity of the implementation is important. In our construction we can keep the
state size small thanks to two reasons. First, the use of a permutation preserves
the entropy of the state (see Section 1.2). Second, we have strong bounds on the
expected complexity of generic state recovery attacks (see Section 4.2).

Making sure that the seeding material provides enough entropy is out of scope
of this paper. This aspect has been studied in the literature, e.g., [10,16] and
is fairly orthogonal to the problem of combining various sources and generating
pseudo-random bits.

In our construction, forward security must be explicitly activated. Forward
security (also called forward secrecy) requires that the compromise of the current
state does not enable the attacker to determine the previously generated pseudo-
random bits [2,9]. As our construction is based on a permutation, revealing the
state immediately allows the attacker to backtrack the generation up to the pre-
vious combination of that state and seeding material. Nevertheless, reseeding
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regularly with sufficient entropy already prevents the attacker from going back-
wards. Also, an embedded security device such as a smartcard in which such a
PRNG would be used is designed to protect the secrecy of keys and therefore
reading out the state is expected to be difficult. Yet, we propose in Section 4.3
a simple solution to get forward secrecy at a small extra cost. Hence, if forward
security is required, one can apply this mechanism at regular intervals.

1.2 Using a hash function for pseudo-random number generation

Sponge functions are a generalization of hash functions and using the latter
for generating pseudo-random bits is not new, e.g., [12,14]. For instance, NIST
published a recommendation for random number generation using deterministic
random bits generators [14]. They specify how to implement a PRNG using a
hash function, a keyed hash function, a block cipher or an elliptic curve. When
using a hash function H, the state of the PRNG is essentially determined by two
values, V and C, each of the size of the input block of H.

– At initialization, both V and C are obtained by hashing the seeding material,
a nonce and an optional personalization string. If V and C are larger than
the output size of H, a specific derivation function is used to produce a
longer digest.

– The pseudo-random bits are produced by hashing V . If more than one output
block is requested, further blocks are produced by hashing V + i, where i
is the index of the produced output block. The value of V is then updated
by combining it with, amongst others, H(V ) and C. The value C is not
modified in this process.

– When reseeding, the new value of V is obtained by hashing the old value of
V together with the new seeding material. The value C is derived from the
new value of V by hashing.

For a PRNG based on a hash function, there are two aspects we wish to draw
attention to.

First, due to the requirements they must satisfy, cryptographic hash func-
tion are not injective. Iterating the function, i.e., computing H(H(. . . H(x)) . . . )
reduces the size of the range resulting in entropy loss. To prevent this, one can
for instance keep the original seed along with the evolving state. In the hash
function based PRNG specified in [14], the value V evolves by iterated hashing
every time output bits are produced, but the value C does not and therefore
keeps the full entropy of the seed. This comes at the cost of keeping a state
twice the block size of the hash function.

Second, when reseeding, the current state or the original seed must be hashed
together with the seeding material. However, the current state V and the seed
C are already the result of a hashing process.

The sponge-based construction we propose below addresses these two aspects
more efficiently. First, by using a P-sponge, i.e., a sponge function based on a
permutation, no entropy is lost when iterating the permutation and this allows
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one to have a smaller state for the same security level. Second, the current state
of our construction is precisely the state of the sponge function. Hence, reseeding
is more efficient than in the example above, as the current state can be reused
immediately instead of being hashed again.

Finally, the use of a sponge function for PRNG is conceptually simpler than
existing constructions.

2 Modeling a reseedable pseudo-random number
generator

We define a reseedable PRNG as a stateful entity that supports two types of
requests, in any order:

– feed request, feed(σ), injects a seed consisting of a non-empty string σ ∈ Z+
2

into the state of the PRNG;
– fetch request, fetch(l), instructs the PRNG to return l bits.

The seeding material is the concatenation of the σ’s received in all feed requests.
Informally, the requirements for a reseedable PRNG can be stated as follows.

First, its output (i.e., responses to fetch requests) must depend on all seeding
material fed (i.e., payload of feed requests). Second, for an adversary not know-
ing the seeding material and that has observed part of the output, it must be
infeasible to infer anything on the remaining part of the output.

To have more formal security requirements, one often defines a reference
system that behaves ideally. For sponge functions, hash functions and stream
ciphers the appropriate reference system is the random oracle [1]. For reseedable
PRNG we cannot just use a random oracle as it has a different interface. However,
we define an ideal PRNG as a particular mode of use of a random oracle.

The mode we define is the following. It keeps as state the sequence of all
feed and fetch requests received, the history h. Upon receipt of a feed request
feed(σ), it updates the history by incorporating it. Upon receipt of a fetch
request fetch(l), it queries the random oracle with a string that encodes the
history and returns the bits z to z + l − 1 of its response to the requester, with
z the number of bits requested in the fetch requests since the last feed request.
Hence, concatenating the responses of a run of fetch requests is just the response
of the random oracle to a single query. This is illustrated in Figure 1. We call this
mode the history-keeping mode with encoding function e(h). The definition of a
history-keeping mode hence reduces to the definition of this encoding function.

As the output of the PRNG must depend on the whole seeding material
received, the encoding function e(h) must be injective in the seeding material.
In other words, for any two sequences of requests with different seeding ma-
terials, the two images through e(h) must be different. We call this property
seed-completeness. With a seed-complete encoding function, the response of the
mode to a fetch request corresponds with non-overlapping parts of the response
of the random oracle to different input strings. It follows that the PRNG returns
independent and a priori uniformly distributed bits.
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Fig. 1. Response of an ideal reseedable PRNG to fetch requests

We thus propose the following definition of an ideal PRNG. In the sequel,
we will use PRNG to indicate a reseedable pseudo-random number generator.

Definition 1. An ideal PRNG is a history-keeping mode calling a random or-
acle with an encoding function e(h) that is seed-complete.

3 Constructing a PRNG using a sponge function

In general, the history-keeping mode is not practical as it needs to store all past
queries and hence requires ever growing amounts of memory. In this section we
will show that if we use a sponge function instead of a random oracle we can
define an encoding function that can work with a limited amount of memory.

3.1 The sponge construction

The sponge construction [3] is a simple iterated construction for building a func-
tion S[f ] with variable-length input and arbitrary output length based on a
fixed-length transformation (or permutation) f operating on a fixed number b of
bits. Here b is called the width. A sponge function, i.e., a function implementing
the sponge construction provides a particular way to generalize hash functions
and has the same interface as a random oracle.

For given values of r and c, the sponge construction operates on a state of
b = r+c bits. The value r is called the bitrate and the value c the capacity. First,
all the bits of the state are initialized to zero. The input message is padded and
cut into blocks of r bits. The sponge construction then proceeds in two phases:
the absorbing phase followed by the squeezing phase.

– In the absorbing phase, the r-bit input message blocks are XORed into the
first r bits of the state, interleaved with applications of the function f . When
all message blocks are processed, the sponge construction switches to the
squeezing phase.

– In the squeezing phase, the first r bits of the state are returned as output
blocks, interleaved with applications of the function f . The number of output
blocks is chosen at will by the user.
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The last c bits of the state are never directly affected by the input blocks and
are never output during the squeezing phase. The capacity c actually determines
the attainable security level of the construction [4].

3.2 Reusing the state for multiple feed and fetch phases

It seems natural to translate the feed of seeding material into the absorbing
phase and the fetch of pseudo-random numbers into the squeezing phase of a
sponge function, as illustrated in Figure 2. However, as such, a sponge function
execution has only one absorbing phase (i.e., one input), followed by a single
squeezing phase (i.e., one output, of arbitrary length), and thus cannot be used
to provide multiple “absorbing” phases and multiple “squeezing” phases.

Fig. 2. The sponge construction with multiple feed and fetch phases.

This apparent difficulty is easy to circumvent. Conceptually, it suffices to
consider that each time pseudo-random bits are fetched, a different execution of
the sponge function is queried with a different input, as illustrated in Figure 3.
When entering the squeezing phase of each of these queries (so before pseudo-
random bits are requested), one must thus guarantee that the data absorbed so
far compose a valid sponge input, i.e., the input is properly padded [3]. This can
be achieved by defining an encoding function adapted to the particular sponge.

In the sponge construction, an input message m ∈ Z∗
2 must be cut into blocks

of r bits and padded. Let us denote as p(m) the function that does this, and we
assume that this function only appends bits after m (as in the padding of most,
if not all, practical hash functions). Let us assume that we wish to reuse the
state of the sponge whose input was the string m1 and from which l > 0 output
bits have been squeezed. The state of the sponge function at this point is as if
the partial message m′

1 = p(m1)||0r(⌈l/r⌉−1) was absorbed. Note that the zero
blocks account for the extra iterations due to the squeezing phase. Restarting
the sponge from this point means that the input is going to be a message m2 of
which m′

1 is a prefix.
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Fig. 3. The multiple feed and fetch phases of Figure 2 can be viewed as a sponge
function queried multiple times, each having only one absorbing and one squeez-
ing phase. In this example, P0||P1, P0||P1||P2 and P0||P1||P2||0r||P3 must all be
valid sponge inputs.

3.3 Constructing a reseedable pseudo-random number generator

To define a PRNG formally, we need to specify a seed-complete encoding function
e(h) that maps the sequence h of feed and fetch requests onto a string of bits,
as in Section 2. The output of e(h) is then used as input to the sponge function.
In practice, the idea is not to call the sponge function with the whole e(h) every
time a fetch is requested. Instead, the construction uses the sponge function in
a cascaded way, reusing the state as explained in Section 3.2. To allow the state
of the sponge function to be reused as described above, e(h) must be such that
if h′ = h||fetch(l)||feed(σ), then p(e(h))||0r(⌈l/r⌉−1) is a prefix of e(h′).

We now explain how to link a mode to a practical implementation. To make
the description easier, we describe a mode with two restrictions. We later discuss
how to implement a more elaborate mode without these restrictions. The first
restriction is on the length of the seed requests. For a fixed integer k, we require
that the length of the seeding material σ in any feed request feed(σ) is such that
|p(σ)| = kr. In other words, after padding, the seeding material covers exactly
k blocks of r bits. The second restriction is that the first request must be feed.
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The mode is stateful, and its state is composed of m ∈ N, the number of bits
fetched since the last feed. We start with a new execution of a sponge function,
and we set m = 0. Depending on the type of requests, the following operations
are done on the sponge function on the one hand and on the encoding function
e(h) on the other. We denote by e a string that reflects e(h) as the requests are
appended to the history h.

– If the request is fetch(l), the following is done.

• The implementation produces l output bits by squeezing them from the
sponge function. Formally, e will be adapted during the next feed request.

• The value of m is adapted: m← m+ l.

– If the request is feed(σ), the following is done.

• Formally, this feed request triggers a query to the sponge function with
e as input. If it is not the first request, e is up-to-date only up to the last
feed request. So, the effect of the fetch requests since the last feed request
must be incorporated into e, as if e was previously absorbed. First, e
becomes p(e) to simulate the padding when switching to the squeezing
phase after the previous feed request. Then ⌈m/r⌉− 1 blocks of r zeroes
are appended to e to account for the extra calls to the f function during
the subsequent fetch requests. Now m is reset: m← 0. (This part affects
only e formally; nothing needs to be done in the implementation.)

• Then, the implementation absorbs σ. Formally, this is reflected by ap-
pending σ to e.

• Finally, the implementation switches the sponge function to the squeez-
ing phase. This means that the absorbed data must be padded and the
permutation f is applied to the state. (Formally, this does not change e,
as the padding is by definition performed when switching to the squeez-
ing phase.)

To show that the encoding function is seed-complete, let us demonstrate
how to find the seeding material from it. If e(h) is empty, no feed request has
been done and the seeding material is the empty string. If e(h) is not empty,
it necessarily ends with the fixed amount of seeding material from the last feed
request, which we extract. Before that, there can be one or more blocks of r bits
equal to zero. This can only come from blocks that simulate fetch requests, as
the padding function p would necessarily create a non-zero block. So, we can skip
backwards consecutive blocks of zeroes, until the beginning of e(h) is reached
or a non-zero block is encountered. In this last case, we can extract the seeding
material from the k blocks of r bits and move backwards by the same amount.
Finally, we repeat this process until the beginning of e(h) is reached.

The construction, described directly on top of the permutation f , is given in
Algorithm 1. For completeness, we also give in Algorithm 2 an implementation
of the squeezing phase of a sponge function, although it follows in a straight-
forward way from the definition [3]. The cost of a feed request is always k calls
to the permutation f . Consecutive fetch requests totalling m bits of output cost
⌈m/r⌉ − 1 calls to f . So a fetch(l) with l ≤ r just after a feed request is free.
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Algorithm 1 Direct implementation of the PRNG using the permutation f

s = 0r+c

m = 0
while requests are received do

if the request is fetch(σ) with |p(σ)| = kr then
P1|| . . . ||Pk = p(σ)
for i = 1 to k do

s = s⊕ (Pi||0c)
s = f(s)

end for
m = 0

end if
if the request is fetch(l) then

Squeeze l bits from the sponge function (see Algorithm 2)
end if

end while

Algorithm 2 Implementation of the squeezing of l bits from the sponge function

Let a be the number of available bits, i.e., a = r if m = 0 or a = (−m mod r)
otherwise
while l > 0 do

if a = 0 (we need to squeeze the sponge further) then
s = f(s)
a = r

end if
Output l′ = min(a, l) bits by taking bits r − a to r − a+ l′ − 1 of the state
Subtract l′ from a and from l, and add l′ to m

end while

The restriction of fixed-size feed requests is not essential and can be removed.
The description of the mode would be only a bit more complex, but would
distract the reader from the aspects of this construction that tightly integrate
to a sponge function and its underlying function f . In fact, the restriction of
fixed-size feed requests makes it easy to ensure and to show that the encoding
function is seed-complete. To allow for variable length seeding materials and
retain seed-completeness, some form of padding within the encoding function
must be introduced to make sure that the boundaries of the seeding material
can be identified. Furthermore, one may have to add a way to distinguish blocks
of zero-valued seeding material from zero blocks due to fetch requests. This can
be done, e.g., by putting a bit 1 in every block that contains seeding material.

The restriction of the first request being a feed request can be removed, even
though it makes little sense generating pseudo-random bits without first feeding
seeding material. If the first request is a fetch, the implementation immediately
pads the (empty string) input, switches the sponge function to the squeezing
phase and produces output bits by squeezing. Formally, in the next feed request,
this must be accounted for in e by setting e to p(empty string)||0r(⌈m/r⌉−1).
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4 Security

Hash functions are often designed in two steps. In the first step, one chooses
a mode of operation that relies on a cryptographic primitive with fixed input
size (e.g., a compression function or a permutation) and builds a function that
can process a message of arbitrary size. If the security of the mode of opera-
tion can be proven, it then guarantees that any potential flaw can only come
from the underlying cryptographic primitive, and thereby reduces the scope of
cryptanalysis.

We proceed similarly to assess the security of the PRNG, in two steps. First,
we look at the security of the construction against generic attacks, i.e., against
attacks that do not use the specific properties of f . We do this in the following
subsections. Then, the security of the PRNG depends on the actual function f
and we give an example in Section 5.

4.1 Indifferentiability

Indifferentiability is a concept developed by Maurer, Renner and Holenstein and
allows one to compare the security of a system to that of an ideal object, such
as the random oracle [11]. The system can use an underlying cryptographic
primitive (e.g., a compression function or a permutation) as a public subsystem.
For instance, many hash function constructions have been proven to be indif-
ferentiable from a random oracle when using an ideal compression function or a
random permutation as public subsystem (e.g., [8]).

By using indifferentiability, one can build a construction that does not have
any generic flaw, i.e., any undesired property or attack that does not rely on the
specific properties of the underlying primitive.

Theorem 1. The pseudo-random number generator P[F ] that uses a permuta-
tion F is (tD, tS , N, ϵ)-indifferentiable from an ideal PRNG, for any tD, tS =
O(N2), N < 2c and any ϵ with ϵ > N2/2c+1 when 1≪ N .

Proof. The proof follows immediately from [4, Theorem 2], where the (tD, tS , N, ϵ)-
indifferentiability is proven between the sponge construction and a random or-
acle. In [4, Theorem 2], the adversary has access to two interfaces: one to the
permutation F or its simulator, and one to input a message m ∈ Z∗

2. In the
context of this theorem, the same settings apply, except that the adversary does
not have a direct access to the latter interface but only through the encoding
function e(h). The same restriction applies both on the side of the sponge con-
struction and on the side of the random oracle. Since the adversary has no better
access than in [4, Theorem 2], her probability of success cannot be higher. ⊓⊔

Distinguishing the sponge-based PRNG calling a random permutation from
an ideal PRNG defined in Section 2 takes about 2c/2 operations. In other words,
the former is as secure as the latter if c is large enough.
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4.2 Resistance against state recovery

Indifferentiability provides a proof of resistance against all possible generic at-
tacks on the construction. However, in practice, we can also look at the resistance
of the construction against generic attacks with a specific goal. In this case, the
resistance cannot be lower than 2c/2 but may be higher.

The main purpose of the PRNG is to avoid that an adversary, who has seen
some of the generated bits, can predict other values. A way to predict other
output bits is to recover the state of the PRNG by observing the generated
pseudo-random bits. In fact, since we use a permutation, the adversary can
equivalently recover the state at any time during a fetch request. She can also
determine the state before or after a feed request if she can guess the seeding
material input during that request.

Let the state of a sponge function be denoted as (a, x), where a is the
outer part (i.e., the r-bit part output during the squeezing phase) and x repre-
sents inner part (i.e., the remaining c bits). Let (a0, a1, . . . , aℓ) be a sequence of
known output blocks. The goal of the adversary is to find a value x0 such that
f(ai−1, xi−1) = (ai, xi) for 1 ≤ i ≤ ℓ and some values xi. Notice that once x0

is fixed, the values xi, 1 ≤ i ≤ ℓ follow immediately. Furthermore, since f is a
permutation, the adversary can choose to first determine xi for some index i and
then compute all the other xj ̸=i from (ai, xi by applying f and f−1.

An instance of the passive state recovery problem is given by a vector (a0,
a1, . . . , aℓ) of r-bit values. We focus on the case where such a sequence of values
was actually observed, so that we are sure there is at least one solution. Also, we
assume that there is only one solution, i.e., one value x0. This is likely if ℓr > c,
and the probability that more than one solution exists decreases exponentially
with ℓr − c. The adversary wants to determine unseen output blocks, so she
wants to have only one solution anyway and will ask for more output blocks to
remove any ambiguity.

The adversary can query the permutation f with values (a, x) and get f(a, x)
or its inverse to get f−1(a, x). If f is a random permutation, we wish to compute
an upper bound on the success probability after N queries.

Theorem 2. Given an instance of the passive state recovery problem A = (a0,
a1, . . . , aℓ) and knowing that there is one and only one solution x0, the success
probability after N queries is at most N2−cm(A), with m(A) the multiplicity
defined as

m(A) = max{mf(A),mb(A)}, with
mf(A) = max

a∈Zr
2

|{i : 0 ≤ i < ℓ ∧ ai = a}|, and

mb(A) = max
a∈Zr

2

|{i : 1 ≤ i ≤ ℓ ∧ ai = a}|.

Proof. Let F1(A) be the set of permutations f such that there is only one so-
lution to the state recovery problem with instance A. For a given value (a, x),
within F1(A), the inner part of f(a, x) (or f−1(a, x)) can be symmetrically cho-
sen among the 2c possible values as the problem instance does not express any
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constraints on the inner parts. In other words, if x is such that the outer part
of f(a, x) is b, then for any x′ ̸= x there exists another permutation f ′ ∈ F1(A)
where x′ is such that the outer part of f ′(a, x′) is b too. Such symmetries exist
also for multiple inner values, independently of each other, as long as the corre-
sponding outer values are different. E.g., if a1 ̸= a2 and (x1, x2) is such that the
outer parts of f(ai, xi) are bi for i = 1, 2, then for any (x′

1, x
′
2) ̸= (x1, x2) there

exists another permutation f ′ ∈ F1(A) where (x′
1, x

′
2) verifies the same equality.

Let us first consider that ℓ = 1. In this case, m(A) = 1.

Let F1(A, x0, x1) be the subset of F1(A) where the value x0 is the solution
and f(a0, x0) = (a1, x1). The sets F1(A, x0, x1) partition the set F1(A) into 22c

subsets of equal size identified by x0 and x1, or in other words, x0 and x1 cut
the set in an orthogonal way.

The goal of the adversary is to determine in which subset F1(A, x0, x1) the
permutation f is. To do so, she is going to make queries of the form (a0, x0) and
check if the outer part of f(a0, x0) is a1 (called forward queries), or she can make
queries to the inverse permutation and check if f−1(a1, x1) gives a0 as outer part
(called backward queries). As the subsets F1(A, x0, x1) cut F1(A) orthogonally
in x0 and x1, forward queries help determine whether x0 is the solution but
without reducing the set of possible values for x1, and vice-versa for backward
queries. So, after Nf forward queries and Nb backward queries, the probability
that one of them gives the solution is 1− (1−Nf/2

c)(1−Nb/2
c) ≤ N/2c, where

the probability is taken over all permutations f drawn uniformly from F1(A).

Let us now consider the general case where ℓ > 1. The reasoning can be gen-
eralized in a straightforward way if all the ai are different, but some adaptations
have to be made to take into account the values appearing multiple times. Given
a set of indexes {i1, . . . , im} such that ai1 = ai2 = · · · = aim , there may or may
not be constraints on the possible values that the corresponding inner values
xi1 , xi2 , . . . , xim can take. For instance, if ai1−1 ̸= ai2−1 or if ai1+1 ̸= ai2+1, then
necessarily xi1 ̸= xi2 . In another example, A can be periodic, allowing the xi

values to be equal.

Let i(j, k) be a partition of the indexes 0 to ℓ such that ai(j,k) = ai(j′,k′)

iff j = j′, i.e., the j index identifies the subsets and the k index the indices
within that subset. Let F1(A, x0, x1, . . . , xℓ) be the subset of F1(A) such that
(x0, x1, . . . , xℓ) is the solution. Here, the set F1(A) is again cut into subsets of
equal size if we use the n vectors (xi(j,1), . . . , xi(j,mj)) as identifiers, and each of
these vectors cut F1(A) in an orthogonal way. (In general, however, the values
x corresponding to identical values a do not cut F1(A) in an orthogonal way.)

The adversary can make a forward query to check whether f(ai(j,k), xi(j,k))
gives ai(j,k)+1 as outer value. Using the same query, she can also check whether
f(ai(j,k′), xi(j,k)) yields ai(j,k′)+1 for any other k′ (as long as i(j, k′) < ℓ). The
same reasoning goes for backward queries: does f−1(ai(j,k′), xi(j,k)) yield ai(j,k′)−1

for any k′ (as long as i(j, k′) > 0). So, a forward (resp. backward) query can
count as up to mf(A) (resp. mb(A)) chances to hit the correct outer value. Af-
ter N queries, the probability that one of them gives the solution is at most
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m(A)N/2c, where the probability is taken over all permutations f drawn uni-
formly from F1(A). ⊓⊔

The previous theorem also imposes an upper bound on the success probability
of preimage attacks, generically against a sponge function. This follows from the
fact that finding a preimage implies that the state can be recovered.

This theorem covers the case of a passive adversary who observes output
blocks. Now, the PRNG implementation could allow seeding material to be pro-
vided from outside, hence allowing an active adversary to absorb blocks of his
choice. This case is covered in the next theorem. We assume that the adversary
controls the blocks bi that are injected at each iteration, i.e., the PRNG computes
f(ai ⊕ bi, xi) = (ai+1, xi+1) and the adversary observes ai+1. Now an instance
of the problem is also determined by the injected blocks B = (b0, b1, . . . , bℓ).

Theorem 3. Given an instance of the active state recovery problem A = (a0,
a1, . . . , aℓ), B = (b0, b1, . . . , bℓ) and knowing that there is one and only one
solution x0, the success probability after N queries is at most N2−cℓ.

Proof. The reasoning is the same as in Theorem 2, except that the queries are
slightly different. In a forward query, the adversary checks if the outer part
of f(ai ⊕ bi, xi) is ai+1. In a backward query, she checks if the outer part of
f−1(ai, xi) is ai−1⊕bi−1. Another difference is that now the forward multiplicity
to be considered is

mf(A,B) = max
a⊕b∈Zr

2

|{i : 0 ≤ i < ℓ ∧ ai ⊕ bi = a⊕ b}|,

as one forward query can be used to check inner values at up to mf(A,B) in-
dexes at once. Furthermore, the adversary can influence the multiplicity, e.g.,
by making sure ai ⊕ bi is always the same value. So m(A) ≤ ℓ and the success
probability after N queries is at most N2−cℓ. ⊓⊔

An active attacker can use ℓ = 2c/2 output blocks and the complexity of her
attack is going to be N = 2c/2, a result in agreement with the indifferentia-
bility result of Theorem 1. However, here we can distinguish between the data
complexity, i.e., the available number of output data of the PRNG and the time
complexity, the number of queries to f , of the attack. If the implementation of a
PRNG limits the number of output blocks to some value ℓmax < 2c/2, the time
complexity of a generic attack is bounded by N = 2c/ℓmax > 2c/2.

4.3 Forward security

Our construction does not inherently provide forward security, but it can be
explicitly triggered by using the following technique. One can fetch r′ ≤ r bits
out of the current PRNG and feed them immediately afterwards. This way, the
r′ bits of the outer part of the state will be set to zero, making this process an
irreversible step. By repeating this process ⌈c/r′⌉ times, the adversary has to
guess at least c bits when evaluating the state backwards. This process can be
activated, for instance, at regular intervals.
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5 A concrete example with Keccak

Keccak is a family of sponge functions submitted to the SHA-3 contest or-
ganized by NIST [13,6,7]. The family uses seven permutations ranging from
a width of 25 bits to a width of 1600 bits. While the SHA-3 proposal uses
Keccak-f [1600] only, other members of the family with a smaller width can
be interesting in the context of a PRNG in an embedded device. For instance,
Keccak[r = 96, c = 104] andKeccak[r = 64, c = 136] both useKeccak-f [200]
as underlying permutation. This permutation is suitable for devices with scarse
resources as the state can be stored in only 25 bytes. In hardware it can be
built in a very compact core and in software it can be implemented with bitwise
Boolean instructions and rotations within bytes only. These sponge functions
can produce 96 and 64 pseudo-random bits, resp., per call to Keccak-f [200].

In terms of security,Keccak follows what is called the hermetic sponge strat-
egy [7,5]. This means that the Keccak-f permutations are designed with the
target that they cannot be distinguished from a randomly-chosen permutation.
Biased output bits on one of the Keccak members, for instance, would imply
a distinguisher on the underlying permutation Keccak-f and would therefore
contradict the design strategy.

Against passive state recovery attacks in the generic case, Theorem 2 proves
a resistance of 2c/m(A). If a sequence of ℓr output bits is known, the expected
value of m(A) is close to 1 unless ℓ > 2r/2. One can limit to r2r/2 the number of
output bits between times where the state has gained at least c bits of fresh seed-
ing material. This way, Keccak[r = 96, c = 104] and Keccak[r = 64, c = 136]
provides a resistance of about 2104 and 2136, resp., against state recovery, at least
as long as no distinguisher on Keccak-f [200] is found.

If the PRNG allows the user to provide seeding material, active state recovery
attacks must also be considered. Here, the implementation can limit, e.g., to
ℓmax = 224 or 232 output blocks before the state has again been fed with c
bits of fresh seeding material. In this case, Keccak[r = 64, c = 136] provides a
resistance of about 2112 and 2104, respectively.

We have implemented our PRNG based on Keccak[r = 96, c = 104] and
Keccak[r = 64, c = 136] and passed the statistical tests proposed by NIST [15].
The tests were performed on 200 sequences of 106 bits each. The sequences were
generated by squeezing 2 × 108 bits after providing the empty string as input,
namely ⌊Keccak[r = 96, c = 104]()⌋2×108 and ⌊Keccak[r = 64, c = 136]()⌋2×108 .

6 Conclusions

We have presented a construction for building a reseedable pseudo-random num-
ber generator using a sponge function. This construction is efficient in terms of
memory use and processing, and inherits the provable security properties of the
sponge construction. We have provided bounds on generic state recovery attacks
allowing the use of a small state. We have given a concrete example of such
a PRNG based on Keccak with a state of only 25 bytes that is particularly
suitable for embedded devices.
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