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Abstract. We propose a flexible, fairly general, coding for tree hash modes. The coding does
not define a tree hash mode, but instead specifies a way to format the message blocks and
chaining values into inputs to the underlying function for any topology, including sequential
hashing. The main benefit is to avoid input clashes between different tree growing strategies,
even before the hashing modes are defined, and to make the SHA-3 standard tree-hashing
ready.
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1 Introduction

A hashing mode can be seen as a recipe for computing digests over messages bymeans of a
number of calls to an underlying function. This underlying functionmay be a fixed-input-
length compression function, a permutation or even a hash function in its own right. We
use the term inner function and symbol f for the underlying function and the term outer
hash function and symbol F for the function obtained by applying the hashingmode to the
inner function.

The hashing mode splits the message into substrings that are assembled into inputs
for the inner function, possibly combined with one or more chaining values and so-called
frame bits. Such an input to f is called a node [6]. The chaining values are the results of calls
to f for other nodes.

Hashing modes serve two main purposes. The first is to build a variable-input-length
hash function from a fixed-input-length inner function and the second is to build a tree
hash function. In tree hashing, several parts of the message may be processed simulta-
neously and parallel architectures can be used more efficiently when hashing a single
message than in sequential hashing [16,8,22,3,9,6].

1.1 Motivation and prior art

The motivation for standardizing a tree hash mode, or to have a tree-hash-ready SHA-3
standard, was discussed at various occasions during the SHA-3 competition on the NIST
hash-forum mailing list [17]. A few candidates, like MD6, SANDstorm and Skein, pro-
posed built-in tree hash modes [21,23,10]. At the Third SHA-3 Candidate Conference,
Lucks, McGrew and Whiting motivated why the SHA-3 standard should support paral-
lelized tree hashing [14].

Different applications or use cases call for different approaches to tree hashing and
different tree topologies. For instance, some environments favor cuĴing the input mes-
sage in consecutive pieces and hashing these pieces independently, while others favor to
hash interleaved pieces of data, see, e.g., [11]. In his presentation at ESC 2013, Lucks sug-
gested to use a n-ary tree with much potential parallelism and to let the implementation
choose the most appropriate evaluation strategy [13]. As another example, some appli-
cations require to keep the intermediate hash values (e.g., to be able to re-compute the



digest if only a part of the input changes), whereas the mere exploitation of parallelism
does not require it.

Given all this diversity, it seems difficult to agree on a “one-size-fits-all” tree hash
mode. Instead, we take the different approach of allowing different tree hash modes to
co-exist. However, the co-existence of differentmodes on top of existing (serial) hash func-
tions calls for caution. While each individual hash mode can be proven secure, the joint
use of several modes can become insecure, in particular due to the different coding con-
ventions that could collide into equal inputs to the inner function. This paper proposes a
way to bring together different tree hash modes in a secure way and follows ideas pre-
sented in [5, Slides 54-59].

1.2 Our contribution

We show that it is possible to define a tree hash coding, i.e., a way to format the input
to the inner function, that can cover a wide range of tree hash modes. For a carefully
designed tree hash coding, one can prove that the union of all tree hashmodes compatible
with it is sound. By sound we mean that it does not introduce any weaknesses on top of
the risk of collisions in the inner function. More precisely, a hashing mode is sound if
the advantage of differentiating F from a random oracle, assuming f has been randomly
selected, is upper bound by q2/2n+1, with q the number of queries to f and n the length
of the chaining values [1,15,7,6].

As a result, tree hash modes compatible with the defined coding can be progressively
introduced while preserving their joint security. Also, as an additional benefit, a tree hash
mode following the coding convention is sound by construction, without the need of ad-
ditional proofs.

For proving soundness,we use the results of [6], inwhichwe specify a set of conditions
for a tree (or sequential) hashing mode to be sound. We assume that to the choice of f is
aĴached a security parameter, like the capacity in the specific case of sponge functions or
the security strength [18,2]. We consider this security parameter to be specified together
with f and to remain constant for its entire use in a tree hash mode.

The remainder of this paper is structured as follows. In Section 2 we explain the range
of possibilities of our proposed sound tree hash coding and illustrate it with some exam-
ples. In Section 3 we specify SюјѢџю, the coding we propose, while in Section 4 we define
what it means for a hashing mode to be compatible with SюјѢџю and prove that any such
tree hash mode is sound. In Section 5 we give some examples of modes and in Section 6
we discuss the use of SюјѢџю in the context of making the SHA-3 standard tree-hashing
ready.

2 Functionality supported by SюјѢџю

We start by recalling the very general concept of node and tree of nodes. We then capture
the functionality of SюјѢџю with trees of hops and how nodes and hops relate to one
another. Finally, some figures illustrate the concepts.

2.1 Modeling tree hash modes

We refer to [6, Section 2] for a detailed description of the model. We here give a short
summary.
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A tree is a directed graph of nodes. Informally speaking, each node is hashed with
the inner function f and the output is given to its parent node as a chaining value. The
exception is for the final node (i.e., the root of the tree), which does not have a parent, and
the output of the outer hash function F(M) is the output of f applied to this final node.

A tree hash mode T specifies a tree of nodes as a function of the input message length
|M| and some specific parameters A. In particular, it is up to the mode to define how
the tree scales as a function of |M|, how the message bits are spread on the nodes, which
nodes takes chaining values from which nodes, etc.

For a fixed |M| and A, a tree hashingmode specifies precisely how to format the inputs
to the inner function f with bits from the message, chaining values and frame bits. The
laĴer are constant bits for padding or domain separation. The union of tree hash modes
is defined in [6, Section 7.3]. The union Tunion of k tree hashing modes Ti simply means
that the user has a choice parameter indicating the chosen mode i composed with the tree
parameters Ai for the particular mode i. With Tunion, the user can thus reach any node
tree that some Ti can produce.

2.2 From generality to functionality

The model of the tree using nodes is very general and allows modeling even the most
cumbersome tree hash mode, e.g., where a node inputs 2 chaining value bits from child
#4 then 7 message bits, etc. We now introduce some concepts that restrict this general
model to one that can be easily represented and yet is sufficiently flexible to cover all
practical cases we can think of.

We represent trees in terms of hops that model how message and chaining values are
distributed over nodes. Any tree of hops uniquely maps to a tree of nodes, so they are
still supported by the model mentioned above. However, not all trees of nodes (such as
the cumbersome example above) can be represented in trees of hops.

In SюјѢџю, any tree of hops is encoded into a tree of nodes. In other words, the func-
tionality supported by SюјѢџю is exactly that of all possible trees of hops that can be built.
SюјѢџю-compatible tree hash modes are not required to generate all possible hop trees,
but instead they can focus on the desired subset of them. In the sequel, we define what
the hops are and how they are encoded into nodes.

2.3 Hops and hop trees

Unlike a node that may simultaneously contain message bits and chaining values, there
are two distinct types of hops: message hops that contain only message bits and chaining
hops that contain only chaining values.

The hops form a tree, with the root of the tree called the final hop. Such a hop tree
determines the parallelism that can be exploited by processing multiple message hops or
chaining hops in parallel.

Each hop has a single outgoing edge. A message hop has no incoming edges. The
number of incoming edges of a chaining hop is called its degree d. The hops at the other
end of these edges are called the child hops of that chaining hop. The edges to a hop are
labeled with numbers 0 to d − 1 and the hop at the end of edge 0 is called the first child
hop. There is exactly one hop that has no outgoing edge and we call it the final hop. There
is exactly one path from each hop to the final hop.
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We define the position of a hop in a hop tree by an index, that specifies the path to
follow to reach this hop starting from the final hop. It consists of a sequence of integers
α = α0α1 . . . αn−1. Indexing is defined in a recursive way:

– The index of the final hop is the empty sequence, denoted ∗.
– The index of the i-th child of a hop with index α has index α||i − 1.

The length of this sequence specifies the distance of the specified hop to the final hop and
is called its height. The height of the hop tree is the maximum height over all hops.

2.4 Interleaving the input over message hops

In general, message bits are distributed onto message hops from the first to the last child.
In streaming applications, one may wish to divide message substrings over multiple

hops as the message becomes available. For this purpose chaining hops have an aĴribute
called interleaving block size I that determines how this shall be done. The principle is that
a chaining hop distributes themessage bits it receives over its child hops. It hands the first
I bits to its first child, the second sequence of I bits to its second child and so on. AĞer
reaching the last of its child hops, it returns to its first child and so on. When a receiving
hop is also a chaining hop, it will distribute the message bits over its child hops according
to its own interleaving block size. When this process ends is determined by the hashing
mode. For example, it can be when the end of the message is reached or when the hops
have reached some maximum size specified in the mode’s parameters.

A mode that does not make use of message block interleaving can set the interleaving
block size of the chaining hops to a value that is larger than any message that may be
presented, and we say I = ∞.

Thewaymessage bits are distributed is formally captured by the GetMessage function
inDefinition 1 below. For exampleswith block interleaving, please see Sections 5.2 and 5.3.

2.5 Mapping hops to nodes

One can define hashingmodes where the concepts of node and hop coincide by imposing
that each node contains exactly one hop. With kangaroo hopping defined below, however,
the first child hop is coded before its parent in the same node.

In a mode without kangaroo hopping, the node tree is constructed from the hop tree
using the same topology. A node contains exactly one hop. The nodes are constructed by
puĴing message bits in nodes containing a message hop and by puĴing chaining values
in nodes containing a chaining hop.

The motivation for kangaroo hopping is the following. The length of (a node mapped
from) a chaining hop is the number of children multiplied by the length of the chaining
value. Compared to sequential hashing, this corresponds to an overhead. Also, there is
typically some additional computational overhead per call to f . Kangaroo hopping re-
duces this overhead by puĴing multiple hops per node in a way that does not jeopardize
the potential parallelism expressed in the hop tree. A chaining hop has an aĴribute that
says whether kangaroo hopping must be applied on it, and if so, the chaining hop is also
called a kangaroo hop. When encoding a kangaroo hop into a node, the node contains its
first child hop itself instead the chaining value (its f -image). For the other child hops it
contains the chaining values as usual. Hence, when evaluating F(M), instances of f can
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process child hops in parallel and then the instance of f for the first child continues pro-
cessing the parent hop.

Kangaroo hopping can be applied in a recursive way, i.e., the first child hop may also
be a kangaroo hop. All in all, a node may contain a message hop followed by zero, one
or more chaining hops, or one or more chaining hops. Kangaroo hopping reduces the
number of nodes to the total number of hops minus the number of kangaroo hops. It is
easy to see that the number of nodes can be reduced to the number of message hops, but
not to less.

The result of applying f to the final node is the output of F. The last hop in this node
is the final hop. The result of applying f to an inner node is a chaining value.

2.6 Illustrations

We illustrate these conceptswith some examples in Figures 1, 2 and 3. These figures depict
hop trees with the following conventions. Message hops have sharp corners, chaining
hops have rounded corners. The final hop has a grey fill, the others a white fill. An edge
between child and parent has an arrow and enters the parent from above if the chaining
value obtained by applying f to the child hop is in the parent hop. It has a short dash and
enters the parent hop from the leĞ in the case of kangaroo hopping. Hops on the same
horizontal line are in the same node.

In Figure 1 there are in total 5 hops: 4 message hops M0 to M3 and one chaining hop
Z∗. The final node contains both the final hop Z∗ and M0 because of kangaroo hopping.
The total number of nodes is 4.

Fig. 1. Example of a hop tree with application of kangaroo hopping. M0 and Z are in the
same node.

In Figure 2 there are in total 7 hops: 4 message hops M00, M01, M10, M11, and three
chaining hops Z0, Z1 and Z∗. The final node contains only the final hop Z∗. The hops M00
and Z0 are in a single node. Similarly, M10 and Z1 are in a single node. The total number
of nodes is 5.

In Figure 3 there is only a single hop, that is at the same time a message hop and the
final hop. Clearly, there is only a single node containing this hop.
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Fig. 2. Another example of a hop tree. M00 and Z0 are in the same node, as well as M10
and Z1.

Fig. 3. Example of a hop tree with a single node

3 The SюјѢџю tree coding

In this section we specify the SюјѢџю tree coding. The goal of this coding is to allow a tree
hash mode to encode a hop tree into the input of f . From this definition, it should be clear
how the evaluation of F(M)must be processed.

For a SюјѢџю-compatible tree hash mode to be sound, the individual parts (e.g., mes-
sage bits, chaining values) must be unambiguously recovered by parsing the node tree.
Of course, such a decoding never occurs in practice but must be ensured for satisfying
tree-decodability. The coding adds frame bits for tree-decodability, as well as to ensure
domain separation between inner nodes and the final node.

The coding is based on a number of simple principles:

– Nodes, namely inputs to f , can be unambiguously decoded into hops from the end.
This is done by
• coding in a trailing frame bit whether it is a chaining hop or a message hop;
• allowing at most a single message hop per node, and this at the beginning;
• allowing the parsing of a chaining hop from the end.

– The parsing of a chaining hop from the end is made possible in the following way:
• it is a series of chaining values followed by an interleaving block size;
• an interleaving block size consists of 2 bytes;
• at the end of the chaining values their number is appended in suffix-free coding;
• the length of the chaining values is determined by the security strength of f .

– We apply simple padding between the hops in a node, so as to allow the alignment
of these elements to byte boundaries, 64-bit word boundaries or to any other desired
boundaries. (This is up to the mode to define.)

– We apply simple padding at the end of inner nodes. Where appropriate, this can be
used by amode to ensure that different sibling inner nodes have the same length. This
may simplify the implementation, e.g., if sibling inner nodes are processed in parallel
using SIMD instruction. (Again, this is up to the mode to define.)
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3.1 Formal description of SюјѢџю

We specify the SюјѢџю tree coding in Figure 4 below. In our specification we use the Aug-
mented Backus-Naur Form (ABNF), which is used for describing the syntax of program-
ming languages or document formats [20]. (We refer to the Wikipedia entries for ABNF.)

In short, anABNF specification is a set of derivation rules,where a non-terminal symbol
is assigned a sequence of symbols or a choice of a set of sequences of symbols, separated
by |. Symbols that never appear on a leĞ side are terminals. Non-terminal symbols are
enclosed between the pair ⟨⟩. In our case, the terminals are either the frame bits ‘0’ and
‘1’, frame bits whose value is specified in the text (FRAME_BIT), bits coming from the
message (MESSAGE_BIT), bits coming from chaining values (CHAINING_BIT), or the
empty string ‘’. The expression n⟨x⟩ denotes a sequence of n elements of type ⟨x⟩. In the
language of [6], the produced nodes compose a tree template, i.e., a tree with placeholders
for message bits and chaining values.

⟨final node⟩ ::= ⟨node⟩ ‘1’

⟨inner node⟩ ::= ⟨node⟩ ⟨padSimple⟩ ‘0’

⟨node⟩ ::= ⟨message hop⟩ | ⟨chaining hop⟩ | ⟨kangaroo hopping⟩

⟨kangaroo hopping⟩ ::= ⟨node⟩ ⟨padSimple⟩ ⟨chaining hop⟩

⟨message hop⟩ ::= ⟨message bit string⟩ ‘1’

⟨message bit string⟩ ::= ‘’ | ⟨message bit string⟩MESSAGE_BIT

⟨chaining hop⟩ ::= nrCVs⟨CV⟩ ⟨coded nrCVs⟩ ⟨interleaving block size⟩ ‘0’

⟨CV⟩ ::= nCHAINING_BIT

⟨coded nrCVs⟩ ::= ⟨integer⟩ ⟨length of integer⟩

⟨integer⟩ ::= ⟨frame byte string⟩

⟨frame byte string⟩ ::= ‘’ | ⟨frame byte string⟩ 8FRAME_BIT

⟨length of integer⟩ ::= 8FRAME_BIT

⟨interleaving block size⟩ ::= ⟨mantissa⟩ ⟨exponent⟩

⟨mantissa⟩ ::= 8FRAME_BIT

⟨exponent⟩ ::= 8FRAME_BIT

⟨padSimple⟩ ::= ‘1’ | ⟨padSimple⟩ ‘0’

Fig. 4. Definition of SюјѢџю tree hash coding

The production rules for ⟨node⟩ express which sequences of hops can be encoded in a
node. E.g., if the node contains onemessage hop followedby two chaining hops because of
kangaroo hopping, ⟨node⟩ expands to ⟨message hop⟩ ⟨padSimple⟩ ⟨chaining hop⟩ ⟨padSimple⟩
⟨chaining hop⟩.

The length of the chaining values ⟨CV⟩ is n bits, where n is a multiple of 8 to ensure
byte-alignment. If the function f has worst-case (or collision resistance) security strength
s [18], then we take n equal to s multiplied by two and rounded to a multiple of 8, i.e.,
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n = 8⌈s/4⌉. In the case of a sponge function with capacity c, n = 8⌈c/8⌉, e.g., if c = 256
bits, then a ⟨CV⟩ consists of 32 bytes [2]. We assume that the security strength of the inner
function is known from the context.

When interpreted as an integer, a byte has the value

∑
0≤i<8

bi2i, (1)

where the first bit in a byte has index 0 and the last 7.
The ⟨coded nrCVs⟩ codes the number of chaining values and is a positive integer. It

consists of two fields:

– ⟨integer⟩: a byte string that can be decoded to an integer using the function OS2IP(X)
specified in the RSA Labs standard PKCS#1[12],

– ⟨length of integer⟩: a single byte that codes the length (in bytes) of the ⟨integer⟩ field.

The interleaving block size codes an integer using a floating point representation. Its
first byte is the mantissa m and its second byte is the exponent e. The value of the inter-
leaving block size I is then given by

I = 2e(2m + 1) .

The largest possible value that the interleaving block size can have with this coding is
(29 − 1)2255, obtained by seĴing all bits in its coding to 1. In practice no message will ever
aĴain this length and we use it to denote that there is no interleaving. This value will be
denoted by I = ∞ in the remainder of this paper.

Within a node, the chaining bits must come from child nodes with increasing indexes,
starting from 0 at the beginning of the node, across all chaining hops of the node. When
kangaroo hopping is not used, the node indexing matches the hop indexing, but not in
general.

The encoding of the message bits in the tree should allow the reconstruction of the
message by applying GetMessage to the final hop according to following definition. Note
that reconstructing the message from the nodes is an operation that is relevant in proving
soundness rather than something to be used in practice.

Definition 1. GetMessage is defined by the following recursion:

– GetMessage(message hop) is the message hop’s message string
– GetMessage(chaining hop) = DeInterleave(L, I), where

• L is an ordered list obtained by calling GetMessage() on each child hop,
• I is the input chaining hop’s interleaving block size aĴribute, and
• DeInterleave(L, I) extracts the first I bits from L0, then the first I bits from L1, …, up
to the last item of list, then back to L0, and so on, until all strings in L are empty. Extracting
more bits than available reduces to extracting all remaining bits.

Definition 2. A tree template is SюјѢџю-compatible if its nodes are compliant with the coding
specified in Figure 4, if the number of ⟨CV⟩ and the block interleaving size are coded as explained
above, and if the chaining bits and message bits are as defined above.
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3.2 Illustrations

We apply the SюјѢџю encoding to the examples depicted on Figures 1, 2 and 3. In these
examples, we use the following conventions. Bit values are wriĴen as 0 or 1, while se-
quences of 8 bits can be wriĴen in hexadecimal notation prefixed with 0xwith numerical
value following Eq. (1). Spaces are inserted only for reading purposes. If Mα is a message
hop, we denote by Mα its message bits. Similarly, if Zα is a chaining hop, we denote by {Iα}
the encoding of its interleaving block size. Then, CVβ is the chaining value resulting from
the application of f to the node with index β. Finally, 0∗ indicates a non-negative number
of bits 0 determined by the tree hash mode, typically inserted for alignment purposes.

The example corresponding to Figure 1 is given in Table 1. In the final node, ⟨node⟩
expands to ⟨message hop⟩ ⟨padSimple⟩ ⟨chaining hop⟩, while in all other nodes it simply
expands to ⟨message hop⟩.

The example corresponding to Figure 2 is given in Table 2. In two inner nodes, ⟨node⟩
expands to ⟨message hop⟩ ⟨padSimple⟩ ⟨chaining hop⟩ and in two other inner nodes, ⟨node⟩
expands to ⟨message hop⟩. In the final node, ⟨node⟩ simply expands to ⟨chaining hop⟩.

For sequential hashing (Figure 3), this reduces to a single final node containing M11,
and the relationship between the inner and outer hash functions reduces to

F(M) = f (M||11). (2)

Node index Encoding
2 M31 10∗ 0
1 M21 10∗ 0
0 M11 10∗ 0
∗ M01 10∗ CV0 CV1 CV2 0x03 0x01 {I∗}0 1

Table 1. Encoding for the hop tree example depicted in Figure 1

Node index Encoding
10 M111 10∗ 0
1 M101 10∗ CV10 0x01 0x01 {I1}0 10∗ 0
00 M011 10∗ 0
0 M001 10∗ CV00 0x01 0x01 {I0}0 10∗ 0
∗ CV0 CV1 0x02 0x01 {I∗}0 1

Table 2. Encoding for the hop tree example depicted in Figure 2

4 SюјѢџю-compatible tree hash modes and soundness

We define SюјѢџю-compatible tree hash modes in the following way.

Definition 3. A tree hash mode is SюјѢџю-compatible if it generates only SюјѢџю-compatible
templates.
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Wewill nowprove that any SюјѢџю-compatible tree hashmode, aswell as the union of
any set of SюјѢџю-compatible tree hash modes, is sound by proving a number of lemmas.

We start by defining S as a tree hash mode that can generate all SюјѢџю-compatible
templates. By construction, this mode is SюјѢџю-compatible. Its parameters A must de-
scribe the whole hop tree structure with each hop’s aĴributes, plus the length of all mes-
sage blocks and the number of zeroes inserted by ⟨padSimple⟩. This mode is not meant to
be used in practice but only in the scope of this proof.

Lemma 1. Given a node instance produced by S (i.e., with SюјѢџю coding) and the knowledge of
the security strength of f , one can recover indices of all hops, the message strings of the message
hops, the location and indices (relative to the given node instance index) of the chaining values,
and the interleaving block size aĴributes of all chaining hops.

Proof. From the definition of SюјѢџю in Figure 4, it is clear that a ⟨node⟩, obtained aĞer re-
moving the trailing bit froma ⟨final node⟩ or ⟨inner node⟩ (and in the laĴer case, also remov-
ing the ⟨padSimple⟩ padding), consists of a possible ⟨message hop⟩ followed by one ormore
⟨chaining hop⟩s, with simple padding in between. A ⟨chaining hop⟩ in turn consists of a se-
quence of ⟨CV⟩s followed by an encoding of their number and a ⟨interleaving block size⟩.

Parsing a ⟨node⟩ can be done starting at the end. If the last bit is 1 it simply consists of
a single message hop. Otherwise, it ends with a chaining hop. In the laĴer case, the last
two bytes code the interleaving block size of the chaining hop and the byte before that
denotes the length of the field coding the number of chaining values and allows localizing
it. Decoding this field yields the number of chaining values and togetherwith their lengths
uniquely determines their positions in the node, including the start of the chaining hop
in the node. This allows continuing the parsing until reaching the beginning of the ⟨node⟩
or the end of the ⟨message hop⟩ in the beginning of the ⟨node⟩.

The interleaving block size of a chaining hop can be computed from the coding in
⟨interleaving block size⟩ at its end and the message string of the ⟨message hop⟩ (if any) can
be obtained by removing the trailing bit 1.

The index of the last ⟨chaining hop⟩ is that of the ⟨node⟩. Whenever kangaroo hopping
is used, the index of a ⟨chaining hop⟩ or ⟨message hop⟩ is recursively the index of the next
⟨chaining hop⟩with 0 concatenated to it. This is in line with the node indexing specified in
Section 3.1.

The indices of the nodes corresponding with the ⟨CV⟩s in a ⟨node⟩ can be obtained by
appending to the last hop index 0 for the first CV, 1 for the second and so on, throughout
all the ⟨chaining hop⟩s of the node instance from beginning to end. ⊓⊔

To prove the soundess of S , we use the three conditions that are shown to be sufficient
in [6]. We now informally summarize them.

– The mode must be tree-decodable. This means that the tree can be parsed to retrieve the
frame bits, message bits and chaining bits unambiguously. There must be a decoding
algorithm Adecode that can parse the tree progressively on subtrees, starting from the
final node only, and each time adding a new inner node and pointing at the corre-
sponding chaining value. Also, the process must terminate by requiring that one can
distinguish between complete and compliant trees, subtrees that are compliant except
for some missing nodes (called final-subtree-compliant), and incompliant trees.

– Themodemust bemessage-complete. Thismeans that themessage can be reconstructed
from the complete tree.
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– The mode must be final-node separable. This essentially means that one can tell the dif-
ference between final nodes and inner nodes.

Lemma 2. The tree hash mode S is tree-decodable.

Proof. First, there are no tree instances that are both compliant andfinal-subtree-compliant.
Lemma 1 proves that one can always unambiguously decode chaining values and distin-
guish them from other kind of bits given only one node instance. This means that a final
subtree S is a proper final subtree iff there are chaining values pointing to nodes missing
in S.

Second, the algorithm Adecode can be defined as follows. Given a tree instance S with
index set J, it first recursively decodes tree node instances of S as in the proof of Lemma 1.
If at any point, the coding does not follow the grammar defined in Figure 4 or when
the string is too short to contain the number of ⟨CV⟩s coded in ⟨coded nrCVs⟩, it returns
“incompliant”.

The algorithm Adecode then looks for nodes that have chaining values pointing to nodes
missing in S (i.e., whose index is not in J). If there no such chaining values, return “compli-
ant”. Otherwise, return “final-subtree-compliant” and the index of such a missing node
using a deterministic rule (e.g., the missing node with the first index in lexicographical
order).

The algorithm Adecode runs in linear time in the number of bits in the tree instance, as
can be seen in the proof of Lemma 1. ⊓⊔

Lemma 3. The tree hash mode S is message-complete.

Proof. Given a compliant tree instance S, the algorithm Amessage can be defined similarly
to the GetMessage function in Definition 1. From Lemma 1, the necessary hop aĴributes
can be extracted from the tree instance.

Clearly, this algorithm runs in linear time in the number of bits in the tree instance. ⊓⊔

Lemma 4. The tree hash mode S is final-node separable.

Proof. SюјѢџю enforces domain separation between final and inner nodes, as the trailing
bit of a final node is always 1 and that of an inner node is always 0. ⊓⊔

Theorem 1. Any SюјѢџю-compatible tree hash mode, as well as the union of any set of SюјѢџю-
compatible tree hash modes, is sound.

Proof. From the previous lemmas and [6, Theorem 1], it follows that S is sound.
The set ZT of tree templates that a SюјѢџю-compatible tree hash mode T produces

is included in those produced by S , i.e., ZT ⊆ ZS . Therefore, T can be implemented by
running S as a sub-procedure, aĞer encoding T ’s parameters in the format that S accepts.
This only restricts what an aĴacker can query, so T is at least as secure as S .

When taking the union of two or more SюјѢџю-compatible tree hash modes, if the tree
instances produced by each of the united modes are SюјѢџю-compatible, then so are the
tree instances produced by the union. It follows that the union of SюјѢџю-compatible tree
hash modes is SюјѢџю-compatible and the argument above carries over to the union. ⊓⊔

11



5 Examples of tree hash modes

In this section we give some examples of tree hash modes that can be realized with the
SюјѢџю coding. In general, specifying a mode mainly comes down to specifying how the
tree grows as a function of the size of the input message. These modes are parameterized
and the value of the parameters must be known at the time of hashing a message.

For fully specifying a tree hash mode compliant with SюјѢџю, one has to specify the
number of hops and their indices, how the message bits are distributed onto message
hops, and for each chaining hop whether kangaroo hopping is applied. In addition, the
mode has to specify the length of the padding elements as they appear in the grammar
of Figure 4. For the padding between hops, this can be derived from a simple strategy,
such as always align on bytes, on 64-bit boundaries or on the input block size (or rate) of
the inner hash function f . If desired, the mode can also specify how to use the padding
at the end of inner nodes to ensure that sibling nodes executed in parallel branches have
the same length.

In our examples, unless otherwise specified, the message is split into B-bit blocks Mi,
i.e.,

M = M0||M1|| . . . ||Mn−1,

with n = ⌈|M|/B⌉ and where the last block Mn−1 may be shorter than B bits.

5.1 Final node growing

With final node growing, the hop tree has fixed height 1 and the number of leaves in-
creases as a function of the input message length. There is only a single chaining hop,
namely the final hop. The indices of the message hops are integers 0 to n − 1 and the
message string in message hop with index i is Mi, hence each message hop has a fixed
maximum size B. Interleaving is not applied, so the interleaving block size in the final
hop is I = ∞.

This mode can be useful to enable a large amount of potential parallelism, namely up
to n = ⌈|M|/B⌉message hops can be processed in parallel if the corresponding message
blocks are available at the same time. In practice, a number p of independent processes Pj,
j = 0, . . . , p − 1 can be set up, which does not depend on the tree structure other than in
the total number of message hops. Each process Pj could take care of message hops with
indices j + kp.

The drawback of this method is an extra cost proportional to the message length, as n
chaining values of length c must be processed in the final node. This extra cost represents
approximately a fraction c/B of the nominal work, which can be made arbitrarily small
by choosing B large enough.

This mode has two parameters:

– B, the maximum size of message string in message hops, and
– whether or not kangaroo hopping shall be applied in the final hop.

5.2 Leaf interleaving

With leaf interleaving, the hop tree has a fixed topology, i.e., its height is 1 and it has
D message hops, with D a parameter. The size of the message hops depends on the in-
put message length. The message is distributed over the leaves as it arrives in blocks of
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size B. The message hops have indices i ∈ {0, 1, . . . , D − 1} and their message string is
Mi||Mi+D|| . . . ||Mi+(si−1)D with si = ⌈(n − i)/D⌉. The interleaving block size in the final
hop shall be set to I = B. If |M| < DB, there are message hops with zero message bits.
(Note that an alternate message assignment procedure is proposed later in this section.)

This mode is useful if one wants to hash a message in up to D parallel threads. The
drawback is that D represents a limit in the potential parallelism, and this value must be
chosen beforehand.

This method has a fixed extra cost, independent of the message length, as the final
node has to process D chaining values.

This mode has three parameters:

– B, the interleaving block size,
– D, the number of message hops, and
– whether or not kangaroo hopping shall be applied in the final hop.

Ensuring equal-length inner nodes In the implementation, it may be interesting to en-
sure that all the D nodes processed simultaneously have equal block lengthw.r.t. the inner
function f . For the D (or D − 1, if kangaroo hopping is applied) inner nodes, this can be
achieved by systematically adding bits with value 0 in the ⟨padSimple⟩ padding of the
⟨inner node⟩ production rule. A simple procedure consists in adding padding bits so as to
match the length of the longest inner node.

When kangaroo hopping is applied, the final node has the possibility to add padding
bits aĞer the message hop, just before the chaining values of the D − 1 inner nodes are
added, i.e., in the ⟨padSimple⟩ padding of the ⟨kangaroo hopping⟩ production rule. The pro-
cessing of all D pieces of message can therefore be aligned, even with kangaroo hopping.

Avoiding systematic block alignment Implementations can also be made easier when
the interleaving block size B is equal to, or a multiple of, the input block size (or rate) r of
the inner hash function f . This avoids re-shuffling of the inputmessage bytes, in particular
for implementations that process less than D nodes in parallel.

But there is a potential efficiency problem in this case if care is not taken in the way
the message bits are spread on the D message hops, in particular for the last |M| mod DB
bits. If the message bits are cyclically spread by blocks of B bits onto the D message hops
until exhaustion, message hops will very oĞen contain a whole number of r-bit blocks.
AĞer adding frame and padding bits, the resulting nodes will systematically be just a few
bits longer than a whole number of r-bit blocks. This would be unfortunate, as the inner
function f would need to process an additional block containing only frame and padding
bits and no message payload, and this amounts to quite an extra fixed cost compared to
just processing the final hop. E.g., if B = r = 1024, D = 4 and the message length is 3208
(mod 4096), the last 3208 bits would be split as 1024 + 1024 + 1024 + 136, causing 3 extra
blocks to be absorbed without any payload.

To address this, the mode can simply spread the last |M| mod DB bits as equally as
possible (up to, say, bytes) onto the D hops. The mode remains SюјѢџю-compatible since
the GetMessage function inDefinition 1 simply concatenates the last blocks of each nodes,
even if they have less than I = B bits. Taking the same example as above, the last 3208
bits could instead be spread as 800 + 800 + 800 + 808 and avoid the 3 extra blocks men-
tioned above. Note that this technique requires to know the end of the message DB bits
in advance or to have a buffer of DB bits.
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Let us specify a possible alternate procedure, which we illustrate in the case that the
message and interleaving block sizes are byte-aligned, i.e., |M| and B are multiples of
8. With m = |M|/8 and b = B/8, we concentrate on the last m mod Db bytes. If m mod
Db = 0, message hops all containwhole blocks, and there is nothing to do. Ifm mod Db >
0, we proceed as follows.

– Let M′ be the last m mod Db bytes of M.
– For i from 0 to D − 1:

• Move the first
⌊m+i

D

⌋
remaining bytes from M′ to the i-th message hop.

5.3 Macro- and microscopic leaf interleaving

Different orders of magnitudes for the block interleaving size I can be useful depending
on the kind of parallelism that one wishes to exploit. At one end of the spectrum is a
single-instruction multiple-data (SIMD) unit of a modern processor or core. Such a unit
can naturally compute two (or more) instances of the same primitive in parallel. For the
processor or core to be able to fetch data in one shot, it is interesting to process simulta-
neously data blocks that are located close to one another. Suitable I values for addressing
this are, e.g., 64 bits or the input block size (or rate) of f .

At the other end of the spectrum is the case of independent processors, cores or even
machines that process different parts of the input in parallel. In contrast, it is here impor-
tant to avoid different processors or cores having to fetch the same memory addresses, or
to avoid copying identical blocks of data for two different machines. Suitable I values for
addressing this are in the order of kilobytes or megabytes.

The two cases can coexist, for instance, if several cores are used to hash in parallel and
each core has a SIMD unit. A suitable tree structure is one with height 2, as depicted in
Figure 2. The subtrees rooted by Z0 and Z1 are handled by different cores, whereas the
leaves are processed together in the SIMD units. The final hop Z∗ splits the message to
hash into macroscopic blocks (large I), while the intermediate chaining hops Z0 and Z1
further split the macroscopic blocks into microscopic blocks suitable for the SIMD unit
(small I).

The tree hash mode of Section 5.2 can be generalized to support such mixed interleav-
ing block sizes.

5.4 Binary tree

With a binary tree, the tree topology evolves as a function of the input message size. All
chaining hops have degree 2, and the message strings in the message hops have a fixed
maximum size B. The height of the message hops depends on the length of the message
and the position of the message string of that message hop in the message. Interleaving
is not applied, so the interleaving block size in all chaining hops is I = ∞.

This mode is useful if one wants to limit the effort to re-compute the hash when only
a small part of the message changes. This requires that the chaining values are stored.
Hence, in this application, kangaroo hopping is not interesting.

The hop tree can be defined in the following way. We first arrange the message blocks
Mi in a linear array to form the message hops. Each message hop can be seen as a tree
with height 0. Then we apply the following procedure iteratively: combine the trees in
pairs starting from 0 by adding a chaining hop and connecting the two root hops to it. If
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the number of trees is odd, the last tree is just kept as such. Applying this ⌈log2 n⌉ times
will reduce the number of trees to a single one. The most recently added hop is the final
hop. The indices of the hops follow directly from the tree topology. Figure 5 illustrates the
case for three different numbers of blocks.

Fig. 5. Examples of binary trees with 9, 11 and 14 leaves

This mode has one parameter:

– B, the maximum size of message strings in the message hops.

5.5 Equal parts

If the length of the input message is known in advance, one can choose to divide the
message in a chosen number D of (almost) equal parts. The hop tree has a fixed topology,
i.e., it has height 1, with the final hop and D message hops. The size of the message hops
depends on the message size and on D, namely, B = ⌈|M|/D⌉, and message hop with
index i contains Mi. Interleaving is not applied, so the interleaving block size in the final
hop is I = ∞.

This mode has two parameters:

– D, the number of message hops, and
– whether or not kangaroo hopping shall be applied in the final hop.

6 Application to Kђѐѐюј and SHA-3

In the future, one may standardize tree hashmodes. By adopting SюјѢџю coding from the
start, any future SюјѢџю-compatible tree hash mode using Kђѐѐюј [4] as inner function
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can be introduced while guaranteeing soundness of the union of that new mode and any
compatible tree hashmode(s) definedup to that point. The sequential hashmodewill then
simply correspond with the single-hop case of Figure 3. As shown in Eq. (2), this comes
down to appending two bits to the message before presenting to the inner function:

– a bit 1 to indicate it is a message hop, and
– a bit 1 to indicate it is the final node.

The draĞ of FIPS 202 contains both the arbitrary output length instances SHAKE128
and SHAKE256, called extendable-output functions, and the SHA-2 drop-in replacement in-
stances SHA3-224 to SHA3-512with their traditional fixed output length [19]. In addition,
the different SHA-3 instances and possible future uses of Kђѐѐюј are domain-separated
by appending a (short) fixed suffix. While Kђѐѐюј’s multi-rate padding already offers
domain seperation between instances with different capacities, the suffix also separates
instances with equal capacities. In particular, the last bit of the suffix is always 1, reserv-
ing 0 for future uses, and the one before last bit is 1 for the extendable-output functions
and 0 for the SHA-2 drop-in’s.

All the instances in the FIPS 202 draĞ are sequential. The extendable-output functions
SHAKE128 and SHAKE256 have a suffix that allows for future SюјѢџю-compatible tree
hash modes, as we discuss below. We now focus on these two functions, as it would not
make much sense to combine tree hashing with the SHA-2 drop-in’s. The reason is that to
carry over the full security of the underlying hash function, one has to set the tree-level
chaining value length n equal to the capacity c (or n equal to twice the security strength
in general). As for SHA3-n, the FIPS 202 draĞ sets c = 2n, one would need to define some
ad-hoc construction on top of it to get two output blocks (like amask generating function),
and this would be absurd given that SHA3-n is obtained by truncating Kђѐѐюј’s output.

The extendable-output functions are defined in two steps:

– first RawSHAKE128(△) = Kђѐѐюј[c = 256](△||11), with 11 the domain separation
suffix of the extendable-output functions, and

– then SHAKE128(M) = RawSHAKE128(M||11),

and similarly for SHAKE256 [19]. This means that RawSHAKE128/256 can be seen as the
inner function f (△) and SHAKE128/256 as the outer function F(M) as in Eq. (2). Future
tree hash modes can possibly use SюјѢџю coding on top of RawSHAKE128/256. In the
expressions above, the notation△ suggests a SюјѢџю-compatibly formaĴed input.

As domain separation and SюјѢџю coding are realized by appending sufficiently few
bits, there is no performance penalty induced by these suffixes for messages that consist
of byte sequences and rate values that are a multiple of 8. The domain separation suffix
consists of two bits (i.e., 11), while the last bits induced by SюјѢџю coding depend on the
type of node, i.e., whether the last hop is a message (1) or a chaining hop (0), followed by
whether the node is final (1) or not (10∗0). In addition, the implementer has also to apply
the multi-rate padding (10∗1). Together, all this fits in one byte (assuming that the mode
does not add any extra bit 0 at the end of inner nodes, the use of which being discussed
in Section 5.2).

Let us take as example RawSHAKE128(△) = Kђѐѐюј[c = 256](△||11), although this
works equally well with RawSHAKE256 as it uses the same suffixes and only the capacity
differs. With sequential hashing,△ reduces to△ = M||11 and, together, the suffixes and
multi-rate padding can be seen as paddingwith 111110∗1. In hexadecimal notation, using
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Kђѐѐюј’s bit numbering conventions [4], namely from the least to the most significant bit
and consistentlywith Eq. (1), this becomes 0x1F 0x00∗ 0x80 if |M| mod r < r− 8 or 0x9F
otherwise. For other node types, the different byte-level paddings are shown in Table 3.

Node type Bit-level Byte-level padding
inner node with chaining hop 010 11 10∗1 0x3A 0x00∗ 0x80 (or 0xBA)
inner node with only message hop 110 11 10∗1 0x3B 0x00∗ 0x80 (or 0xBB)
final node with chaining hop 01 11 10∗1 0x1E 0x00∗ 0x80 (or 0x9E)
final node with only message hop 11 11 10∗1 0x1F 0x00∗ 0x80 (or 0x9F)

Table 3. Bit- and byte-level padding for RawSHAKE128/256, assuming no extra bit 0 at
the end of inner nodes. The last row corresponds to SHAKE128/256 [19].

7 Conclusion

We showed that it is possible to define a fairly general coding for tree hashing, such that
any tree hash mode compatible with this coding is sound and remains sound even when
considered in a larger set of compatible tree hash modes. We proposed a concrete cod-
ing called SюјѢџю. In the current FIPS 202 draĞ, the SHA-3 extendable-output functions
chosen by NIST adopt SюјѢџю for sequential hashing as a special case of tree hashing.
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