
Note on Kђѐѐюј parameters and usage

The Kђѐѐюј sponge function family is characterized by three parameters: the bi-
trate r, the capacity c (where r + c is the width of the underlying permutation) and
the diversifier d. We propose in [5] four instances that can be taken as functions for
the four (fixed) output lengths NIST requires for SHA-3 and a variable-output-length
instance, denoted by Kђѐѐюј[], with default values for the parameters. Section 1 be-
low recalls the Kђѐѐюј offering: its parameters, security claim and design strategy,
and our proposal to NIST.

Whilst we are happy with our choice, there are other valid parameter choices that
NIST or othersmay prefer. In this notewe discuss our choice of parameters and other
possible ways of using the Kђѐѐюј family.

With its arbitrary length, the output of Kђѐѐюј can be truncated at the length
requested by the user. In Section 2 we discuss how using a single function has clear
advantages and, if needed, simple ways to achieve diversification. The capacity c is
the security parameter of Kђѐѐюј and the use of a single instance with fixed capacity
puts a ceiling on the achievable security level. We explain in Section 2 why this limit
for Kђѐѐюј[] is high enough not to be a problem.

In Section 3 we examine the issues of leĴing the user choose the capacity c while
keeping c+ r = 1600, which allows trading off claimed security for speed by increas-
ing c and decreasing r, or vice versa.

In Section 4we explain the choice of Kђѐѐюј- f [1600] in our standard proposal and
discuss where the Kђѐѐюј- f permutations with other widths may be adequate.

Away to exploit parallelism is to apply tree hashing. This is especially relevant on
modern CPUs with their multiple cores and SIMD architecture within a core. In Sec-
tion 5 we explain that a tree hashing mode calling Kђѐѐюј as a compression function
can take advantage of both.

Finally, we address the question of migration possibilities to a more secure ver-
sion, should Kђѐѐюј be chosen as a standard and a weakness be discovered later. We
propose in Section 6 two techniques based on input pre-processing with very limited
impact on implementations.

1 The Kђѐѐюј offering
Asdefined in [5], Kђѐѐюј is a family of sponge functionswithmembersKђѐѐюј[r, c, d]
characterized by three parameters:

• bitrate r,

• capacity c and

• diversifier d.

The sum r + c determines the width of the Kђѐѐюј- f permutation used in the sponge
construction and is restricted to values in {25, 50, 100, 200, 400, 800, 1600}. The diver-
sifier value satisfies 0 ≤ d < 256.

The sponge construction uses r + c bits of state, of which r are updated with mes-
sage bits between each application of Kђѐѐюј- f during the absorbing phase and out-
put during the squeezing phase. The remaining c bits are not directly affected by
message bits, nor are they taken as output.

The purpose of the diversifier is to provide diversification, i.e., two instances of
Kђѐѐюј with two different values of d behave as two independent hash functions
(even with same values of r and c). See Section 2.2 for a discussion.



Note on Kђѐѐюј parameters and usage

1.1 The security claim and design strategy
Kђѐѐюј allows one to choose its security parameter c independently from the output
length. We express our security claim for Kђѐѐюј in [5] as a flat sponge claim [2]. This
type of claim implies that the expected complexity of any aĴack should be the same
as for a randomoracle, up to 2cclaim/2. The value cclaim is called the claimed capacity and
fully determines the claimed security level of the variable-output-length function.

The design philosophy underlying Kђѐѐюј is the hermetic sponge strategy: adopt-
ing the sponge construction using a permutation that should not have structural
distinguishers [6, Chapter 4]. In this approach, we can make a flat sponge claim
with claimed capacity cclaim equal to the parameter c in the construction and trade in
claimed security level for speed by increasing c and decreasing r accordingly.

Additional information on the security claim and design strategy is given in [4].

1.2 Our proposal for SHA-3
In [14], NIST requires the candidate algorithms to support at least four different out-
put lengths n ∈ {224, 256, 384, 512} with associated security levels. Hence, we have
defined four fixed-output-length variants (where ⌊⌋n indicates truncation to the first
n bits):

• n = 224: ⌊Kђѐѐюј[r = 1156, c = 448, d = 28]⌋224

• n = 256: ⌊Kђѐѐюј[r = 1088, c = 512, d = 32]⌋256

• n = 384: ⌊Kђѐѐюј[r = 832, c = 768, d = 48]⌋384

• n = 512: ⌊Kђѐѐюј[r = 576, c = 1024, d = 64]⌋512

The capacity values were chosen to meet the requirement that (second) preimage
resistance should be 2n (with n the output length). The different diversifier values
d = n/8 address a requirement expressed by NIST on the hash forum mailing list
[13, 23-Jun-2008], that a hash function with a given output length should not be the
prefix of another one with larger output length.

In addition, we proposedKђѐѐюј[] (with default parameters), where the usermay
truncate the output at the desired output length. The default bitrate r = 1024 is a
power of two to ease data alignment and the resulting capacity is c = 1600 − 1024 =
576. The default value for the diversifier d is 0.

2 LeĴing the user choose the output length
In many use cases of hash functions the output length is determined by the applica-
tion. This is the case for key derivation functions and several important public key
signature and key establishment schemes, for instance the widely used RSA padding
schemes [11, 12]. In those cases, either the output must be truncated or an addi-
tional construction called mask generating function (MGF) must be applied to pro-
vide longer outputs [11, 12].

Consider a protocol to be designedwith the requirement of a specific digest length
ℓ. When using a hash function family that consists of a set of instances with different
output lengths and ℓ is not among them, one must first choose an instance and either
truncate or specify an MGF construction. When using a variable-output-length hash
function, no such choice must be made and it suffices to truncate the output to the
desired length. The advantage of a variable-output-length hash function becomes
even more important if a protocol or application requires digests whose length is a
parameter of the protocol.

2

http://sponge.noekeon.org/index.html#flat
http://sponge.noekeon.org/index.html#hermetic


Note on Kђѐѐюј parameters and usage

2.1 What about the security level?
Traditionally, hash functionusers expect a security level thatmatches its output length:
2n/2 for collision-resistance and 2n for (second) preimage resistance. As stated in Sec-
tion 1.1, a variable-output-length hash function with a claimed capacity cclaim shall
resist to any aĴack with complexity below 2cclaim/2, but nothing is claimed above this
level. Hence, the value 2cclaim/2 acts as a ceiling for the security level.

This ceiling poses no problem if high enough. For instance, the ceiling is at 2288

in the case of Kђѐѐюј[], as it has capacity c = 576. Consider an application where
we need a 512-bit output. Traditionally, a (second) preimage resistance level of 2512

would be expected, while for Kђѐѐюј[] with output truncated to 512 bits a security
level of only 2288 is claimed. However, the difference between these two security lev-
els is purely philosophical with no practical implications whatsoever. By translating
these computation complexities into physical quantities such as time or energy, both
are simply out of reach and will remain so in the foreseeable future [8].

2.2 What about diversification?
A single function for all output lengths may pose problems when a scheme requires
that different output lengths are generatedwith different hash function instances. Di-
versification is actually a requirement that may arise for other aspects than different
output lengths. A scheme or protocol may require different hash function instances
even if their output lengths are the same. In Kђѐѐюј[] the diversifier is fixed to 0
and as such does not appear to address this requirement. However, diversification
can be established at very small cost using a well-established technique called domain
separation. Domain separation is an efficient means to construct different function in-
stances from a single underlying function. If the underlying function is secure, the
derived functions can be considered as independent functions.

One can implement domain separation by appending or prepending different
constants to the input for each of the function instances: fi(M) = Kђѐѐюј(M∣∣Ci)
or fi(M) = Kђѐѐюј(Ci∣∣M). As a concrete example, one can use a convention based
on namespaces such as KђѐѐюјNS for diversification [6, Section 6.3]. The use of the
diversifier d is actually a built-in way to achieve domain separation.

3 LeĴing the user choose the capacity
For standardization, one option is to impose a small set of (or just a single instance
of) parameter values. Another option is to allow the user to freely choose them. We
consider in particular the case where a user can freely¹ choose the capacity of Kђѐѐюј
with r = 1600 − c so that the width of Kђѐѐюј- f is fixed. In this section, we describe
the advantages and disadvantages of this option.

As explained in [4], the hermetic sponge strategy allows the user to trade in speed
for claimed security, or vice versa, by choosing the capacity. Relative performance
estimates for various (r, c) pairs are listed in Table 1.

If the user decides to lower the capacity to c = 256, providing a claimed security
level equivalent to that of AES-128, the performance will be 31% greater than for the
default value c = 576. If the user wants an output truncated to 512 bits to provide the
traditionally expected (second) preimage resistance of 2512 by seĴing the capacity to
c = 1024, she can do this at the cost of a performance decreased by 78%.

A variable capacity can also result in important efficiency gain in applications
dealing with (mostly) short messages. Consider for example an application with
messages that are exactly 1024 bits long. The padding will extend these messages

¹We limit the choice to multiples of 8 to avoid intra-byte bit shuffling.

3



Note on Kђѐѐюј parameters and usage

r c Relative performance
576 1024 ÷1.778
832 768 ÷1.231
1024 576 1
1088 512 ×1.063
1152 448 ×1.125
1216 384 ×1.188
1280 320 ×1.250
1344 256 ×1.312
1408 192 ×1.375

Table 1: Relative performance of Kђѐѐюј[r, c] with respect to Kђѐѐюј[].

by 32 bits resulting in a two-block message and hence applying Kђѐѐюј[] results in
two calls to Kђѐѐюј- f . If we decrease the capacity by 32 bits to 544 (still providing
an astronomical security level), a padded message fits in a single block and only one
call to Kђѐѐюј- f must be made.

In [8] we provide a simple application to help determine the capacity value and
output length given required security levels for collision-resistance and (second) pre-
image resistance.

3.1 What about the indifferentiability?
The sponge indifferentiability proof of [3] assumes the capacity is fixed and does
not prove indifferentiability of a set of sponge functions calling the same underlying
function with different capacity values. However, for the padding function used in
Kђѐѐюј, we have proven an indifferentiability theorem in [6, Section 3.1.2] for the
case of variable capacity and diversifier values. We refer to that section for a more
in-depth explanation.

3.2 What about the implementation cost?
An argument against tunable parameters in a standard is that it makes implementa-
tions more expensive, as they usually have to support all parameter values to fully
implement the standard. However, for Kђѐѐюј, the main implementation cost is for
the Kђѐѐюј- f [1600] permutation that is the same for all capacity values. The addi-
tional cost of the variable capacity value consists of the required support for the con-
figurable bitrate r determining the length of the message blocks to be XORed into the
state and of the coding of the bitrate in the padding. The cost of supporting a variable
capacity value with a fixed state width is therefore quite limited.

3.3 What about the burden of choice for the user?
Another argument against tuneable parameters in a standard is that it puts the bur-
den of choice on the hash function user, typically a designer of a protocol or scheme.
In particular, the choice of the capacity value determines a ceiling to the security
level that the sponge function provides and one could argue that the user usually
does not have the responsibility or the expertise to make that choice. In our opinion,
the security claim of Kђѐѐюј is easy to understand and the user can be guided in the
choice of the capacity by some simple recommendations. For example, one could fix
a maximum capacity value cmax and recommend taking a capacity equal to twice the
output length for output lengths below cmax/2 bits and a capacity equal to cmax bits
for higher output lengths.

4



Note on Kђѐѐюј parameters and usage

4 Parameters of the Kђѐѐюј- f permutation
All Kђѐѐюј members we propose for standardization make use of the same permu-
tation: Kђѐѐюј- f [1600]. A single implementation of this permutation supports all
the proposed variants, hence reducing cost, for instance, in hardware implementa-
tions. Furthermore, the choice of Kђѐѐюј- f [1600] favors 64-bit CPUs and yet remains
efficient on 32-bit (and smaller) processors.

SoĞware implementations ofKђѐѐюј- f use bitwise Boolean operations and (cyclic)
shiĞs on CPU words. A typical implementation maps each lane to a CPU word, re-
sulting in the state of Kђѐѐюј represented in 25 words of 64 bits each. The choice
of the lane size therefore favors CPUs with the corresponding word size. Specifi-
cally, the implementation of Kђѐѐюј- f [1600] on a 64-bit CPU can exploit 64-bit wide
Boolean operations and 64-bit rotations.

Because of the bit-oriented design ofKђѐѐюј- f , other approaches are possible. For
instance, Kђѐѐюј- f [1600] can be efficiently implemented on a 32-bit CPU by using the
bit interleaving technique [6, Section 7.2.2]. Here the odd and even bits of each lane are
split, and the state of Kђѐѐюј- f [1600] is represented as 50 words of 32 bits. Rotations
are then performed as cyclic shiĞs on 32-bit words, making them efficient on a 32-
bit processor. There is a cost associated to the conversion of the input message into
this representation, but this cost remains small compared to the evaluation of the
permutation itself (see [6, Section 7.2.2] for the performance penalty). Note that the
use of, for example, modular addition would have prevented the bit interleaving
technique.

Some families of hash functions make use of two distinct compression functions,
one oriented to 32-bit words and one to 64-bit words, in order to provide different
output lengths and/or security levels. A full implementation on a given platform of
such a family includes two separate compression functions, and hence at least one
of the two will have a word length different from that of the CPU. In contrast, all
Kђѐѐюј members we propose for standardization can be implemented with a single
permutation Kђѐѐюј- f [1600] that thanks to bit interleaving can work with either 25
words on a 64-bit CPU or 50 words on a 32-bit CPU.

In terms of memory footprint, Kђѐѐюј- f [1600] requires 200 bytes of RAM for the
state and some working memory [6, Section 7.2]. The sponge construction allows
implementations to XOR the message block into the state directly, relieving the ap-
plication from dedicating a memory area for it. This optimization applies where the
hashing API is composed of functions such as Init, Update and Final. In general
a message queue must be allocated, which can be avoided for sponge functions or
similar.

The choice of width 1600 allows for a high bitrate even for high capacity values.
For instance, Kђѐѐюј canprocess 800more input bits per evaluation ofKђѐѐюј- f [1600]
than of Kђѐѐюј- f [800] when c is fixed. However, the designer of an application on a
memory-constrained device may opt for a smaller state size by using an alternate set
of parameters. Kђѐѐюј[r = 288, c = 512] for instance uses 100 bytes of RAM. And if
256 bits of capacity are enough for such an application, Kђѐѐюј[r = 144, c = 256] uses
only 50 bytes. Similar ideas apply to hardware implementations, whereKђѐѐюј- f [800]
and Kђѐѐюј- f [400] can be seen as compact alternatives. Using a smaller width has a
price, though, as it requires to support another Kђѐѐюј- f permutation. This may be
acceptable if such an application is exceptional or operates in a rather closed system,
freeing the standard from supporting anything else other than Kђѐѐюј- f [1600].

5



Note on Kђѐѐюј parameters and usage

5 Tree hashing
A way to exploit parallelism is to use tree hashing [7]. This technique can exploit
SIMD architectures, multiple cores, or both. Like most hash functions, Kђѐѐюј can
benefit from this technique. We do not propose tree hashing in the specifications be-
cause a sound and well-defined tree hashing construction can work above the mode
of operation and so using an unmodified instance of Kђѐѐюј. The drawbacks of this
technique, though, are the larger memory footprint and the extra fixed processing
cost, which can be significant for smaller messages.

In the light of two recent papers [10, 7], a sound tree hashing mode can be easily
built as an application on top of existing hash functions and does not have to be
embedded in the mode of operation. We define in [6, Section 6.4] an example of such
a tree hashing application called KђѐѐюјTџђђ.

Tree hashing can not only benefit frommultiple cores, they can also exploit SIMD
architectures on a single core. For instance, a specific instance of KђѐѐюјTџђђ can
reach about 9 cycles/byte (single core) on NIST’s reference platform using SSE2 in-
structions [6, Section 7.3.3]. Further improvements may be obtained, in the future,
with larger SIMD registers, and of course by moving to a multiple core implementa-
tion.

This technique is not useful for short messages, however, as there is a fixed addi-
tional cost corresponding to the processing of a couple of extra blocks (the number
depending on the chosen parameters). Also, thememory footprint increases with the
number of Kђѐѐюј- f permutations that can be evaluated in parallel.

On platformswith less parallelism, KђѐѐюјTџђђ can only partially exploit the par-
allelism available in the chosen tree structure or can even be implemented sequen-
tially (and is thus not significantly slower than Kђѐѐюј itself for long messages). Ex-
cept for the memory footprint and for short messages, it can be advantageous to use
a tree enabling a high level of parallelism and let the target platform organize the
computation to take advantage of this parallelism or less.

Finally, it is worth noting that the arbitrarily-long output length of Kђѐѐюј comes
in handy for tree hashing. Referring to [6, Section 6.4] and [7] for the technical ex-
planations, the intermediate hashing nodes need to produce at least c bits of output,
while the four fixed-output-length variants output only n = c/2 bits. This is another
reason for proposing an arbitrary output length.

6 On the safety margin
In this section, we explain how the safety margin in Kђѐѐюј can be increased or de-
creased simply by changing the number of rounds in Kђѐѐюј- f and explain why
we think the nominal number of rounds provide a high safety margin. Finally, we
describe two techniques to build a safe mode into Kђѐѐюј implementations at liĴle
additional cost, which one could migrate to in the hypothetical case that a weakness
in Kђѐѐюј is found.

6.1 Changing the number of rounds
The number of rounds of the Kђѐѐюј- f permutations is defined and fixed in [5] and
reflects the trade-off between performance and safety margin made in the design.
Nevertheless, the specifications make it easy to define Kђѐѐюј with an increased or
decreased number of rounds. With the exception of the addition of a round con-
stant, the rounds are identical. As the round constants are defined for any number
of rounds, it is sufficient to modify the total number of rounds in the specifications.

6



Note on Kђѐѐюј parameters and usage

So, someone who would like to use Kђѐѐюј but does not feel comfortable with
its safety margin can simply adopt a version with more rounds. Someone who feels
that Kђѐѐюј has an excessive safety margin can adopt a version with fewer rounds.

6.2 The safety margin with the nominal number of rounds
As reflected in our estimates for the safety margin of Kђѐѐюј against different types
of aĴack in [6, Section 5.4], we think Kђѐѐюј- f has about twice as many rounds as
strictly required for Kђѐѐюј to stand up to its security claim, for any choice of the
capacity. The high number of rounds in Kђѐѐюј- f [1600] is due to our adoption of
the hermetic sponge strategy [4] and our wish to keep a safety margin against all
distinguishers, irrespective of their strength and applicability to Kђѐѐюј itself, e.g.,
see [9].

In September 2009 we have increased the number of rounds from 18 to 24 in
Kђѐѐюј- f [1600]. We took this decision aĞer the publication of a valid but non-threa-
tening 16-round structural distinguisher in [1]. We refer to [9] for a treatment of this.

6.3 Migration path in the presence of a deployed standard
We expect a hash standard to be ubiquitous both in soĞware and dedicated hardware
implementations. If a weakness is discovered that has a real-world security impact,
it is beneficial to have an affordable migration path towards a version without this
weakness. On the NIST SHA-3 mailing list Ron Rivest [13, 2-Aug-2009] and other
researchers proposed having a security parameter (e.g., the number of rounds) to
be determined by the user. Disadvantages of this approach were discussed and the
most important ones are the increased implementation cost due to the additional
parameter, the burden of having to choose the security parameter value by the hash
function user and the risk of denial-of-service aĴacks. Moreover, the support of a
smooth choice for the security parameter may actually introduce new weaknesses,
as observed by Stefan Lucks in his message to the NIST SHA-3 mailing list [13, 3-
Aug-2009].

In the most lightweight version of this approach the security parameter would
have only two values: one nominal value and one high-security value (e.g., tripling
the number of rounds). In case of emergency, it would then be possible to migrate to
the high-security value. Wedescribe here twomethods formigrating to amore secure
version that applies to Kђѐѐюј without impact on the hash function implementation
itself.

Both methods we propose consist of an input pre-processing step. In all use cases
the input to a sponge function is a bitstring, typically made of message bits and pos-
sible key bits. AĞer padding, the input consists of a sequence of r-bit blocks. Before
presenting it to the sponge construction, this input can then be expanded by insert-
ing bytes with fixed values in certain places. Depending on where these bytes are
inserted, this has an effect similar to reducing the rate of the sponge function or mul-
tiplying the number of rounds of the underlying permutation.

The first option is to reduce the effective bitrate from r bits to r− δ bits by inserting
aĞer every input block of r − δ bits a block of δ bits equal to zero. This reduces the
number of bits an aĴacker can exploit from r to r − δ. Note that with this approach
the hermetic sponge strategy is abandoned as the effective capacity is increasedwhile
the claimed capacity stays fixed.

The second option is to multiply the effective number of rounds of the under-
lying permutation by a factor α by inserting aĞer every input block of r bits α − 1
blocks of r bits with fixed and well-defined values. The α applications of the under-
lying permutation interleaved with the application of the fixed blocks, can then be
seen as a single permutation with α as many rounds as the original one and with the

7



Note on Kђѐѐюј parameters and usage

fixed-value blocks as round constants. As it is generally expected that increasing the
number of rounds increases the safety margin with respect to almost all aĴacks, this
provides amigration path to a security fix in case of a hypothetical securityweakness.
In this case the hermetic sponge strategy can bemaintained as the single permutation
with α as many rounds is assumed to have no structural distinguishers.

Both methods have the advantage of leaving Kђѐѐюј- f untouched, which limits
the cost of migrating should the need occur.

The Kђѐѐюј Team, February 2010
Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche

References
[1] J.-P. Aumasson and W. Meier, Zero-sum distinguishers for reduced Keccak-f and for

the core functions of Luffa and Hamsi, Available online, 2009, http://131002.net/
data/papers/AM09.pdf.

[2] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, Sponge functions, Ecrypt
HashWorkshop 2007, May 2007, also available as public comment to NIST from
http://www.csrc.nist.gov/pki/HashWorkshop/Public_Comments/2007_May.html.

[3] , On the indifferentiability of the sponge construction, Advances in Cryptol-
ogy – Eurocrypt 2008 (N. P. Smart, ed.), Lecture Notes in Computer Science, vol.
4965, Springer, 2008, http://sponge.noekeon.org/, pp. 181–197.

[4] , Cryptographic sponges, 2009, http://sponge.noekeon.org/.

[5] , Kђѐѐюј specifications, version 2, NIST SHA-3 Submission, September
2009, http://keccak.noekeon.org/.

[6] , Kђѐѐюј sponge function family main document, NIST SHA-3 Submission
(updated), September 2009, http://keccak.noekeon.org/.

[7] , Sufficient conditions for sound tree and sequential hashingmodes, Cryptology
ePrint Archive, Report 2009/210, 2009, http://eprint.iacr.org/.

[8] , Tune јђѐѐюј to your requirements, 2009, http://keccak.noekeon.org/
tune.html.

[9] ,Note on zero-sum distinguishers of јђѐѐюј- f , Comment on the NIST Hash
Competition, January 2010, http://keccak.noekeon.org/NoteZeroSum.pdf.

[10] Y. Dodis, L. Reyzin, R. Rivest, and E. Shen, Indifferentiability of permutation-based
compression functions and tree-based modes of operation, with applications to MD6,
Fast SoĞware Encryption (O. Dunkelman, ed.), Lecture Notes in Computer Sci-
ence, vol. 5665, Springer, 2009, pp. 104–121.

[11] IEEE, P1363-2000, standard specifications for public key cryptography, 2000.

[12] RSA Laboratories, PKCS # 1 v2.1 RSA Cryptography Standard, 2002.

[13] NIST,Mailing list on NIST’s cryptographic hash workshops and hash algorithm com-
petition, http://csrc.nist.gov/groups/ST/hash/email_list.html.

[14] , Announcing request for candidate algorithm nominations for a new crypto-
graphic hash algorithm (SHA-3) family, Federal Register Notices 72 (2007), no. 212,
62212–62220, http://csrc.nist.gov/groups/ST/hash/index.html.

8

http://131002.net/data/papers/AM09.pdf
http://131002.net/data/papers/AM09.pdf
http://www.csrc.nist.gov/pki/HashWorkshop/Public_Comments/2007_May.html
http://sponge.noekeon.org/
http://sponge.noekeon.org/
http://keccak.noekeon.org/
http://keccak.noekeon.org/
http://eprint.iacr.org/
http://keccak.noekeon.org/tune.html
http://keccak.noekeon.org/tune.html
http://keccak.noekeon.org/NoteZeroSum.pdf
http://csrc.nist.gov/groups/ST/hash/email_list.html
http://csrc.nist.gov/groups/ST/hash/index.html

	The Keccak offering
	The security claim and design strategy
	Our proposal for SHA-3

	Letting the user choose the output length
	What about the security level?
	What about diversification?

	Letting the user choose the capacity
	What about the indifferentiability?
	What about the implementation cost?
	What about the burden of choice for the user?

	Parameters of the Keccak-f permutation
	Tree hashing
	On the safety margin
	Changing the number of rounds
	The safety margin with the nominal number of rounds
	Migration path in the presence of a deployed standard


