
The making of Kђѐѐюј

Guido Bertoni1, Joan Daemen1, Michaël Peeters2 and Gilles Van Assche1

1 STMicroelectronics
{guido.bertoni,joan.daemen,gilles.vanassche}@st.com

2 NXP Semiconductors
michael.peeters@nxp.com

Abstract. The sponge function Kђѐѐюј is the versatile successor of SHA-1 and the SHA-2 se-
ries of hash functions. Its structure and components are quite different from its predecessors
and at first sight it seems like a complete break with the past. In this paper we show that Kђѐ-
ѐюј is the endpoint of a long learning process involving many intermediate designs, mostly
gradual adaptations but also some drastic changes of direction. We take off from our aĴempts
at fixing Pюћюњю [26], resulting in RюёіќGюѡҼћ [4] and our insights on trail backtracking ap-
plied to generalizations of Pюћюњю and RюёіќGюѡҼћ, known as alternating-input and belt-and-
mill structures. We explain howwe originally presented the sponge construction to compactly
express security claims for our proposals and how we finally decided to use it in an actual
design, that would become Kђѐѐюј. Then we explain the design choices made in Kђѐѐюј and
how some of its building blocks can be traced back to its predecessor RюёіќGюѡҼћ and even
earlier.

Keywords: Kђѐѐюј, SHA-3, sponge functions

1 Introduction

On Tuesday, October 2, 2012, the American National Institute of Standards and Technol-
ogy (NIST) announced the selection of Kђѐѐюј as the winner of the SHA-3 Cryptographic
Hash Algorithm Competition [40,41]. Its structure and building blocks are quite different
from that of its predecessors SHA-1 and the SHA-2 series of hash functions and at first
sight it seems like a complete break with the past. Kђѐѐюј is the result of a long andwind-
ing process that we report on in this paper, starting from our initial aĴempts to tweak the
Pюћюњю hash function [26] after it had been broken in [42] to the final version of Kђѐѐюј
that is the basis for the SHA-3 standard.

This paper is structured as follows. In Section 2 we recall the alternating-input struc-
ture, that is shared by RюёіќGюѡҼћ and its predecessor Pюћюњю. We describe a powerful
aĴack that applies to this structure called trail backtracking and the parameters relevant for
its expected workload. In Section 3 we recall the belt-and-mill structure that is a refine-
ment of alternating-input. Section 4 is dedicated to the Pюћюњю hash function, the aĴacks
that broke it and our aĴempts at fixing it. In Section 5we describe our design RюёіќGюѡҼћ
and our initial analysis of it. In Section 6 we discuss the role played by Gћќяљіќ, a work-
in-progress similar to to RюёіќGюѡҼћ but aimed at gaining more insight and third-party
cryptanalysis of RюёіќGюѡҼћ. In section 7 we sketch why we introduced the sponge con-
struction and how it evolved from a mere theoretical tool for expressing security claims
to the construction underlying Kђѐѐюј. In Section 8 we explain for each of the building
blocks of Kђѐѐюј how they got their final form. Finally we derive some conclusions and
look towards the future in Section 9.

2 Generating internal collisions in the alternating-input structure

The RюёіќGюѡҼћ and Pюћюњю hash functions and their predecessors are all based on a
simple structure that we formalized in [4] under the name alternating-input. In this section

we recall this structure, describe a generic aĴack that applies to it called trail backtracking
and the parameters relevant for its expected workload.

2.1 The alternating-input structure

The alternating-input structure operates in three phases. The first phase consists of the
alternation of the injection of r-bit input blocks and the application of an invertible round
function R to the state.We call r the bitrate. The second phase consists of a fixed number of
round function iterations on the state without input or output (blank rounds). The third
phase consists of the iterated application of the round function while returning part of
the state in between the rounds. The construction is specified in Algorithm 1.

Algorithm 1 The alternating-input construction
Input: sequence of r-bit blocks p0 to pnp−1
Output: sequence of ro-bit blocks z0 to znz−1
Operates on an b-bit state S
S← 0 {State initialization}
for i = 0 to np − 1 do

T = S⊕ Fi(pi) { Fi: input mapping}
S← R(T) { R: round function}

end for{Injection}
for i = 0 to nb − 1 do

S← R(S)
end for{Mangling}
for i = 0 to nz − 1 do

S← R(S)
zi = Fo(S) { Fo: output mapping}

end for{Extraction}

The input mapping Fi maps the r bits of an input block to bits of the state and the
output mapping Fo selects ro bit from the state to form an output block. Both are linear
operations.

Adopting the alternating-input construction reduces the design to that of the round
function, the input and output mappings and the number of blank rounds nb. Informally
speaking, the goal is to choose these such that the resulting function is secure. In the design
approach internal collisions play a central role. An internal collision is a pair of different
inputs that leads to the same value of the state. The design approach is the following:

Internal collisions Design R and Fi such that generating internal collisions is hard.
State recovery Design R and Fo such that recovering the state from a sequence of output

blocks is hard.
Decorrelation Design R and choose nb such that the permutation formed by the blank

rounds does not have input-ouput correlations significantly higher than in a random
permutation.

Difference propagation Design R and choose nb such that the permutation formed by
the blank rounds does not have differentials with differential probability (DP) value
significantly higher than in a random permutation.

We illustrate how this helps in satisfying the often-cited requirements of cryptographic
hash functions: collision resistance and (2nd-) preimage resistance [38, Table 9.2]:

2

Collision and 2nd-preimage resistance If generating internal collisions is infeasible, any
pair of inputs will have a non-zero difference at the input of the blank rounds. The dif-
ference propagation property makes controlling the difference after the blank rounds
infeasible. Note that a 2nd-preimage implies a collision.

Preimage resistance Having a preimage implies recovering a state that leads to the given
output. So if state recovery is infeasible, finding a preimage for a given digest is also
infeasible.

When hashing long messages with alternating-input constructions, the speed is de-
termined by the complexity of R and size of the input blocks. These in turn determine
the resistance against internal collisions. For that reason, our research effort spends most
time studying resistance against internal collisions.

We investigated several aspects of this such as finding fixed points of the round func-
tion, trying to generate collisions fromarbitrary state differences and computing the round
function backwards. Still, the central criterion in the design of alternating-input structure
is the resistance against generating internal collisions making use of so-called differential
collision trails. The remainder of this section is dedicated to these trails, how to exploit
them to generate internal collisions and the characteristics of these trails that determine
the aĴack complexity: the backtracking cost and backtracking depth.

2.2 Differential trails

When applying a function f to two different inputs x and x∗, the result is a pair of outputs
y and y∗ with y = f (x) and y∗ = f (x∗). The output difference y′ = y⊕ y∗ depends on
the input difference x′ = x ⊕ x∗ and the absolute values of the inputs. We call a couple
(x′, y′) a differential over f . The differential probability (DP) of (x′, y′) is the proportion
of input pairs {x, x⊕ x′} such that f (x)⊕ f (x⊕ x′) = y′. If DP > 0, we say the differential
is possible.

We denote a differential over the round function R in round i by (t′i, s′i+1) and call it a
round differential. The (restriction) weight of a possible differential, w(t′i, s′i+1), is defined by

DP(t′i, s′i+1) = 2−w(t′i ,s
′
i+1) .

We now define a (differential) trail. A ℓ-round trail consists of the concatenation of ℓ
possible round differentials and is defined by a sequence of ℓ difference triplets plus the
final state difference:

Q :
(
(s′0, p′0, t′0), (s

′
1, p′1, t′1), . . . , (s′ℓ−1, p′ℓ−1, t′ℓ−1), s′ℓ

)
.

A trail describes a propagation of differences during a number of rounds: p′i denotes the
difference in the input injected before round i and the three members of each triplet are
related by t′i = s′i⊕ Fi(p′i). We say this trail starts in s′0 and ends in s′ℓ. Figure 1 schematically
depicts a trail.

The proportion of all state/input pairswith initial state difference s′0 and ℓ-round input
sequence difference p′0, p′1, . . . , p′ℓ−1 such that the difference in the state follows the trail is
denoted by DP(Q). We define the weight of a trail by the sum of the weights of its round
differentials:

w(Q) =
ℓ−1

∑
i=0

w(t′i, s′i+1) .

If we assume that the conditions imposed by the round differentials are independent, the
weight determines the DP of the trail: DP(Q) ≈ 2−w(Q). For high DP values, this is often

3

Fig. 1. A differential trail

a good approximation. However, for small DP values or if the round function has specific
structural properties, the approximation may become meaningless.

In many round functions the restriction weight w(t′i, s′i+1) equals to the number of
Boolean equations that the members of a pair must satisfy at the round input to result in
the specified output difference. In order to find an input pair that follows a given trail, the
bit values of themembers of a pairmust satisfy equations at the input of each round deter-
mined by the corresponding round differential. To satisfy these conditions, the aĴacker
has degrees of freedom in choosing the absolute values of the input block.

For finding a pair that follows a trail there are two main techniques: statistical and
algebraic. A purely statistical aĴack simply triesmany input pairs that exhibit a difference
until one is found that follows the trail. A purely algebraic aĴack considers the set of
equations formed by the round differentials and tries to solve them. Combined aĴacks
algebraically generate input pairs that already satisfy a subset of the equations before
trying them out statistically.

We call a trail that starts with a zero difference in the state and ends with a zero dif-
ference in the state a collision trail. In collision trails it holds that s′0 = s′ℓ = 0.

As the round function is injective, this implies t′ℓ−1 = 0 and hence s′ℓ−1 = Fi(p′ℓ−1).

2.3 A naive statistical aĴack

A collision trail Q with sufficiently lowweight can be used to generate internal collisions.
An aĴacker just applies pairs of inputs that exhibit the difference sequence p′i specified by
the trail Q and verifies whether this results in an internal collision. These pairs look like
this:

p−d p1−d . . . p0 p1 . . . pℓ−1
p−d p1−d . . . p0 ⊕ p′0 p1 ⊕ p′1 . . . pℓ−1 ⊕ p′ℓ−1. (1)

The aĴacker has to try about 1/DP(Q) pairs in order to find a pair that follows the trail
till the end. The required number of pairs to find an internal collision is typically smaller:
for the same sequence of input differences p′0, p′1, . . . , p′ℓ−1 other collision trails may exist.
The workload L of the aĴack is determined by the sum of DP(Q) over all collision trails
compatible with a given sequence of input differences p′0, p′1, . . . , p′ℓ−1.

2.4 Trail backtracking

Trail backtracking is a technique in which the aĴacker applies pairs of inputs as spec-
ified in Equation (1) and tracks the difference propagation as it proceeds through the
rounds. In this section we will consider a round as the application of the round function
followed by the injection of an input block. We call a pair entering round i a pair with first

4

member p−d . . . pi and secondmember differing from the first one by the input difference
0 . . . p′0 . . . p′i and that has followed the trail up to round i. For such a pair the difference
at the input of the round i is t′i.

Say we have N random pairs of inputs entering round 0. For these pairs, s′0 = 0 and
hence t′0 = Fi(p′0). For each pair we compute the difference after the round function. If
this is equal to s′1, we say the pair has survived round 0. The total number of pairs that
are expected to survive round 0 is N2−w(t′0,s′1). For each such pair, we can append an in-
put block p1 to one member and p1 ⊕ p′1 to the other. As there are 2r input block values,
this results in N2r−w(t′0,s′1) pairs entering round 1. Following this reasoning, and assuming
the conditions imposed by the round differentials are independent, the number of pairs
entering round g is

N2∑
g−1
i=0 (r−w(t′i ,s

′
i+1)).

We have an internal collision if the number of pairs surviving round ℓ− 1 is at least 1. We
can use this as a basis for computing the required number of pairs entering each round.
This leads us to define the accumulative excess weight.

Definition 1. The accumulative excess weight of a trail Q at round i is defined recursively as:

– Hℓ−1 = 0,
– Hi = max(Hi+1 + w(t′i, s′i+1)− r, 0)

The accumulative excess weight Hi is the number of conditions of the round differentials
from round i to ℓ − 1 that cannot be satisfied by the input blocks starting from pi. The
expected number of pairs entering round i that are required to have an internal collision
is hence given by min(2Hi−r, 1) and the required number of pairs surviving round i − 1
is 2Hi . Note that Hi can never become negative. If it is zero, typically only a single pair
surviving round i− 1 is needed to find a pair for the complete trail.

We now define the backtracking cost of a trail as the maximum of the accumulative
excess weight over all its rounds.

Definition 2. The backtracking cost of a differential trail Q is

Cb(Q) = r + max
0≤i<ℓ−1

Hi.

The backtracking cost gives an idea of the number of evaluations of R to find an inner
collision in a naive statistical backtracking aĴack based on a trail Q. Typically, the profile
of Hi values has a single peak and this number is very close to 2Cb(Q). In the extreme and
highly unlikely case of a profile with Hi values that is flat, the number of evaluations can
grow up to (ℓ− 1)2Cb(Q).

Table 1 illustrates a weight profile and corresponding backtracking cost.
The trail backtracking aĴack only finds collisions that follow one specific trail, while

the naive aĴack results in an internal collision whenever a collision trail is followed for
the given sequence of input differences. It turns out that in practice an input difference
must have very many collision trails for the naive aĴack to be more efficient than the trail
backtracking aĴack. For a given alternating-input design, an aĴacker must hence look
for trails with a low backtracking cost. A designer can try to prove lower bounds for the
minimum backtracking cost or convincing arguments that there are no trails with low
backtracking cost.

5

Table 1. Example of trail weight profile and its backtracking cost

2.5 The backtracking depth

One can reduce the workload of a backtracking aĴack by using algebraic solving tech-
niques. Each round differential imposes a number of conditions on the state at the round
input equal to its weight. Some of these conditions can be satisfied algebraically using the
input block pi. The laĴer must simply be chosen from a subset determined by the inter-
mediate state and the conditions. In general, the ability to choose input pairs that satisfy
x binary conditions with certainty, reduces the expected number of pairs to try by a factor
2x.

In the best case (from the aĴacker’s point of view), r of these equations for Si can be
converted to equations in bits of the input block pi. For the remaining conditions, the
aĴacker has no choice but to transfer them via the round function to equations in bits
of earlier input blocks pi−1, pi−2, Now the total number of conditions at the input of
round i is upper bound by r + Hi. As each input block can only satisfy r conditions, some
of these r + Hi conditions must be transferred over x = (r + Hi)/r rounds to input block
i− x. Transferring a condition over the round function complicates its algebraic expres-
sion. While the complexity of this strongly depends on the algebraic properties of the
round function, it typically increases exponentially with the number of rounds that must
be bridged. This leads us to the definition of the backtracking depth.

Definition 3. The backtracking depth Db(Q) of a trail Q is its backtracking cost divided by the
bitrate:

Db(Q) =
Cb(Q)

r
.

For a fully algebraic aĴack, the backtracking depth is an indication of the number of
rounds over which condition are transferred. If the backtracking depth is between i and
i + 1, this number of rounds is i.

6

In a backtracking aĴack that combines statistical and algebraic techniques the work
factor is determined by the backtracking depth and the number of rounds over which
the aĴacker is able to transfer conditions. If we denote the laĴer by nR, the expression
2r(Db−nR) gives a good idea of the number of round function evaluations in the aĴack is
approximately .

2.6 Determining the bitrate r

Given a round function, choosing r is a balancing exercise between performance and se-
curity. It has a threefold impact on the laĴer:

– It expresses degrees of freedom for trail construction and decreasing r increases the
minimum average weight per round over all collision trails.

– For a given trail weight profile, decreasing r increases the excess weight of round dif-
ferentials given by w(t′j, s′j+1)− r and hence the backtracking cost of the trail.

– For a given trail weight profile and backtracking cost, decreasing r increases the back-
tracking depth.

Figure 2 illustrates the laĴer two effects for an imaginary trail. At round 4, there are
13 conditions, r of which can be solved using the available degrees of freedom, hence
H4 = 13− r. At round 3, 9− r condition that cannot be solved are immediately added and
so on. The sum of r and the maximum in the profile of the accumulated excess weights
is the backtracking cost and the backtracking depth is the cost divided by r. Clearly, de-
creasing the bitrate has a dramatic effect on the backtracking cost and even more so on
the backtracking depth.

round number weight Hi
i w(t′i , s′i+1) r = 8 r = 6 r = 4 r = 2

0 11 5 15 25 35
1 10 2 10 18 26
2 2 0 6 12 18
3 9 6 10 14 18
4 13 5 7 9 11
5 - 0 0 0 0

backtracking cost 14 21 29 37
backtracking depth 1.75 3.5 7.25 19.5

Fig. 2. Example of trail weight profile and backtracking features for different bitrates

3 The belt-and-mill structure

In this section we explain a special case of the alternating-input structure, called belt-and-
mill. It is the asymmetric structure underlying the round function of RюёіќGюѡҼћ and a
generalization of that of Pюћюњю. The state consists of two parts, the belt and the mill,
and the round function treats them very differently.

In this architecture the role of the mill is similar to that of a round function in a SPN
block cipher or the F-function in a Feistel block cipher. Its purpose is to provide nonlin-
earity and local diffusion. The belt has a function similar to that of the key schedule in
block ciphers, the input expansion in hash functions or the switching of the two halves

7

in a Feistel cipher. Its purpose is to provide global diffusion and it is expected to play an
important role in avoiding collision trails with low cost.

A round consists of four operations that can take place in parallel:
Mill function an invertible non-linear function applied to the mill,
Belt function an invertible simple linear function applied to the belt,
Milt feedforward some bits of the mill are fed to the belt in a linear way,
Bell feedforward some bits of the belt are fed to the mill in a linear way.
The algorithm is given in Algorithm 2 and the structure is illustrated in Figure 3.

Algorithm 2 A belt-and-mill round function
(A, B) = R(a, b), with
A = Mіљљ(a)⊕ Bђљљ(b) and
B = Bђљѡ(b)⊕Mіљѡ(a)

Fig. 3. The belt-and-mill structure

The positions of the bits that are fed forward shall be chosen so that the resulting round
function is invertible. We have

Bђљљ(b) = Bђљљ
(
Bђљѡ−1 (B +Mіљѡ(a))

)
= Bђљљ

(
Bђљѡ−1(B)

)
+Bђљљ

(
Bђљѡ−1 (Mіљѡ(a))

)
It follows that if Bђљљ(Bђљѡ−1(Mіљѡ(a))) = 0 for any value of a, then Bђљљ(b) can be com-
puted from B. This allows the recovery of a and hence makes the round function invert-
ible.

The only non-linear component in the round is the mill function. This has an impor-
tant impact on the differential propagation properties of the round function. Using the
linearity of the functions, given a difference (a′, b′) at the input of the round, the output
difference (A′, B′) is:

A′ =Mіљљ(a)⊕Mіљљ(a⊕ a′)⊕ Bђљљ(b′)
B′ =Mіљѡ(a′)⊕ Bђљѡ(b′)

8

B′ is fully determined by (a′, b′) and hence independent of the value of the state (a, b). A′

is also independent of b but depends on a throughMіљљ(a)⊕Mіљљ(a⊕ a′). It follows that
the DP and weight of a possible round differential is fully determined by the differences
at the input and the output of the mill function. We have:

w((a′, b′), (A′, B′)) = w(a′, A′ ⊕ Bђљљ(b′))

Any differential with a′ = 0 has weight 0. Moreover, the weight of any round differential
cannot be higher than the width of the mill minus 1. So the range of possible weights of
round and trail differentials is fully determined by the mill size and independent of the
belt.

As for algebraic aĴacks, only the mill function results in nonlinear equations and all
other equations are linear.When consideringmultiple rounds one only needs to introduce
a number of internal variables equal to the width of the mill for keeping the equations of
the same algebraic degree as the round function.

4 The breakdown of the Pюћюњю hash function

The Pюћюњю round function has the belt-and-mill structure. However, it has two modes
called push and pull. The pushmode is used in the input injection phase and the pull mode
in the output extraction phase. In the push mode, there is no feedforward from the mill
to the belt (Mіљѡ(a) = 0), leading to a linear dependence of all belt bits from the input
sequence. In this section we concentrate on generating inner collisions during the input
injection phase and only consider the push mode.

4.1 Summary of Pюћюњю

Pюћюњю was designed by Joan Daemen and Craig Clapp in 1998 [26] as a variant of
SѡђѝRієѕѡUѝ that appeared in [24]. We refer to the original papers for the full specifi-
cation and give here a short description focusing on the aspects that are relevant for the
origins of Kђѐѐюј.

The belt and mill are arrays of 32-bit words:

– the mill (originally called state): 17 words of 32 bits (ai, i = 0 . . . 16)
– the belt (originally called buffer): 8× 32 words of 32 bits

The belt function Bђљљ(b) is a simple linear feedback register operating on 8-word stages,
the mill function Mіљљ(A) an invertible non-linear function with high local diffusion and
consisting of the sequence of 4 steps ι ◦ θ ◦π ◦ γ. These steps operate in parallel on the bits
of the words. Indexing should be taken modulo 17, + denotes bitwise addition in GF(2)
and≫ cyclic shift.

– γ : ai ← ai + (ai+1 + 1)ai+2 + 1 for non-linearity;
– π : ai ← a7i ≫ i(i + 1)/2 for inter- and intra-word dispersion;
– θ : ai ← ai + ai+1 + ai+4 for bit mixing;
– ι : a0 ← a0 + 1||031 for asymmetry;

The bell function Bђљљ(b) simply takes an 8-word stage of the belt and adds it to the last 8
words of the mill. The milt function Mіљѡ(a) is empty (in the push mode). In between the
rounds, 8 words of input are added into the first stage of the belt and into 8 words of the
mill. All additions here are bitwise additions. Figure 4 illustrates the structure of Pюћюњю
in the push mode.

9

Fig. 4. The structure of Pюћюњю

4.2 The collision aĴacks

In Pюћюњю, the role of the belt is to ensure that internal collisions can only occur for input
pairs with a difference that satisfies certain criteria. As in the push configuration the belt
evolves independently from the mill, an internal collision implies that there must be a
collision in the belt.

We illustrate the difference propagation in the Pюћюњю belt in Figure 5. Each square
denotes a 256-bit unit (8 words of 32 bits) and one horizontal line denotes the differences
in input and state. The simplest input difference paĴern that one can apply that leads
to a collision in the belt is indicated by the black squares in the input vector: a non-zero
difference is injected in three time instances spanning 33 rounds. The 256-bit difference in
the first time instance fully determines the two other ones. The simplest such paĴern has a
single active bit in each of the three differences. Any input difference sequence that leads
to a collision in the belt will be the superposition of translated versions of this paĴern.
This can be seen as the convolution of an atomic input sequence and the simple paĴern.

The propagation of input differences through the belt is illustrated in Figure 5. Clearly,
as can be seen in this figure, even the simplest input difference injects differences in the
mill in five time instances: three times when it appears at the input and two times via the
bell function when it appears in the stage of the belt indicated by the bold frame in the
figure. Input differences based on more complex atomic input sequences result in even
more difference injections into the mill. At first sight the fact that any collision trail spans
at least 33 rounds implies it is difficult to find collisions. In 2001, Vincent Rijmen et al.
demonstrated that this is not the case. They produced a collision trail and a procedure to
use it for finding colliding input pairs with a workload below that in our claimed security
level[42]. In 2007,we refined this aĴack in [25] to generate collisions instantaneously using
some simple equation-solving techniques.

The aĴack in [42] makes use of a very simply atomic input difference sequence span-
ning three rounds. This results in 5 separate input difference sequences in the mill. They
used an atomic input difference sequence such that for each of these input difference se-
quences, there exists a 3-round mill collision trail. The atomic input difference sequence
consists of three subsequent input differences, where the middle one is always zero. At
word-level the difference paĴerns are either all-1 or all-0.We call suchpaĴerns 1-symmetric.
The resulting input difference corresponds to the black and dark grey squares in Figure 5.
The aĴack of [42] can be seen as a form of trail backtracking and the presented collision
trail has backtracking cost 14× 32 = 448 and backtracking depth 1.75.

10

Fig. 5. Collision trails in the Pюћюњю belt

As said, only the differences in the mill contribute to the trail weight profile and hence
the backtracking cost and depth. The large bitrate allows the aĴacker to address the mill
collision trails separately. The input difference sequence is chosen in advance and each
of the five mill collision trail can be satisfied using the input blocks just preceding them.
This allows solving for the mill collision trails serially.

For each of the mill collision trails, the authors of [42] noticed that some of conditions
can be easily converted to conditions on input bits and propose to satisfy the remaining
conditions by trying many input pairs. The complexity of their aĴack is 2n evaluations of
the Pюћюњю round function, with n the backtracking cost minus the number of conditions
that can be satisfied by choosing input blocks with the correct values. They pushed their
aĴack just far enough until they reached a value of n that breaks the security claim of
Pюћюњю.

When studying the aĴack with the aim of patching up Pюћюњю, it became clear to us
that the aĴack could be made more efficient:

– For the atomic input difference sequence in [42] they only considered sequences of the
form dx, 0, dy. In fact it is likely that there are differences of type dx, dy, dz for which
there are collision trails in the mill in all 5 instances. As the number of such sequences
is (28 − 1)3 instead of (28 − 1)2 for those of type dx, 0, dy it is very likely that this will
reduce the aĴack complexity. The resulting input difference corresponds to the black,
white and dark grey squares in Figure 5.

– They only considered 1-symmetric differences. By also considering differences with
less symmetry, the search space becomes larger, probably leading to even beĴer aĴack
complexity.

11

– More effort can be put in solving the equations algebraically. One may convert con-
ditions on bits of the mill to conditions on the input of some rounds earlier, thereby
greatly reducing the number uncontrolled bits and the number of inputs to try.

After we had abandoned aĴempting to fix Pюћюњю and had proposed RюёіќGюѡҼћ, we
tried out these ideas aiming at a publishable aĴack. We indeed found a beĴer atomic dif-
ference sequence that allowed us to satisfy all equationswith the input blocks injected just
before themill collision trails. This resulted in the generation of collisions with an effort of
26 calls to the Pюћюњю round function. The effort to generate a collision is actually smaller
than that of hashing the colliding messages. The trail we produced has backtracking cost
13× 32 = 416 and backtracking depth 1.625. We reported on this work in [25], including
an example collision.

4.3 AĴempts at fixing Pюћюњю

An initial idea to strengthen Pюћюњю against this kind of aĴacks was to modify the belt
LFSR so that the number of times a difference is injected in the state grows from 5 to a
larger number. This imposes more restrictions on the atomic difference sequence as for
each of the difference injections in the mill, there must exist a mill collision trail. It is then
likely that the weight per round goes up and with it the backtracking cost. However, we
soon realized that there is a generic collision aĴack that works for any efficient belt-and-
mill structure that has no feedforward from mill to belt.

This aĴack takes any pair of partial messages and constructs trailing parts so that the
resulting messages lead to an internal collision. It goes like this:

– Apply two partial messages to the function, leading to two values of the state.
– Consider the difference in the belt. Compute an input difference sequence that will set
the difference in the belt to zero. This can be done by solving a set of linear equations.
The typical required length of this input sequence is the size of the belt divided by the
bitrate.

– Pick a pair of trailing parts that have the correct difference and perform a number of
rounds for injecting them, minus the last z rounds, with z is the size of mill divided
by the bitrate, multiplied with a small factor (e.g. 1.5).

– Consider the mill at this stage. Try to find from the current difference in the mill a
differential trail leading to zero. This trailfinding seems not so difficult if z is small
because the difference injected into the mill in the last round is known and the input
difference of the current round is known. A meet-in-the-middle search can be con-
ducted here.

– Try now to convert the conditions on the bits of the mill imposed by the mill round
differentials to bits of the input. This involves algebraic computations that become
more difficult with the number of rounds have to be bridged, i.e., with z. Converting
conditions in the mill in round t to conditions in the input in round t − m becomes
more difficult as m grows. If z is small, we expect the weight of the trail to be a small
factor times the size of the mill.

In Pюћюњю the mill has 17 words and the input 8 words, so we can take z = 3. To find an
internal collision in the mill a at time ℓ, it is sufficient to express some conditions on bits
of aℓ−1, aℓ−2 and aℓ−3 to conditions on pℓ−2, pℓ−3 and pℓ−4. In short, for a function to be
resistant against this aĴack, either it shall be infeasible to find a differential trail that leads
to an internal collision under a fixed input difference sequence for z rounds, or it shall be
infeasible to find an input pair that follows such a trail.

12

For small z and low-degree round functions such as the one in Pюћюњю this does not
inspire much confidence. The only method to make such a function resistant against such
aĴacks is increasing the ratio between the mill size and bitrate to a large value, e.g., 8 or
more. However, the speed of the function is proportional to the bitrate divided by themill
size, as the mill function takes the largest portion of the computational resources. From
this we concluded that having no feedforward from mill to belt would never lead to an
efficient hash function.

5 The research cipher RюёіќGюѡҼћ

Based on the insights we gained from investigating Pюћюњю, we set out in late 2005 to
design an improved version.We added amill-to-belt feedforward, reduced the size of the
belt and the bitrate, increased the size of the mill by two words, tweaked the feedforward
from belt to mill and called the result RюёіќGюѡҼћ. We presented it at the NIST Hash
Workshop in 2006 [4].

5.1 Summary of RюёіќGюѡҼћ

In RюёіќGюѡҼћ, the belt and mill are arrays of words of size w, a parameter ranging from
64 (the default) down to 1. This results in 64 different functions, where the version with
word size w is denoted as RюёіќGюѡҼћ[w].

– the mill is composed of 19 words of w bits each, and
– the belt is composed of 3× 13 words.

The belt function Bђљѡ(b) is a cyclic register operating on 3-word stages, the mill func-
tion Mіљљ(A) a function similar to the one in Pюћюњю, but with indices taken modulo 19
instead of 17.

– γ : ai ← ai + (ai+1 + 1)ai+2 + 1 for non-linearity;
– π : ai ← a7i ≫ i(i + 1)/2 for inter- and intra-word dispersion;
– θ : ai ← ai + ai+1 + ai+4 for bit mixing;
– ι : a0 ← a0 + 1||0w−1 for asymmetry;

We can define a partition of the bits in the belt that is orthogonal to the partition in
words. We call the elements of this partition slices. A slice is a subset of statebits with
the same position within the words. Clearly, the belt of RюёіќGюѡҼћ[w] has w slices. The
steps γ and θ operate on the slices independently.

The bell function Bђљљ(b) takes the last 3-word stage of the belt and adds them into 3
words of the mill. The milt function Mіљѡ(a) takes 12 words of the mill and injects them
in 12 words of the belt. In between the rounds, 3 words of input are added into the first
stage of the belt and into 3 words of the mill. An output block z consists of 2 words z[i].
All additions are bitwise additions. Figure 6 illustrates the structure of RюёіќGюѡҼћ.

The number of blank rounds is 16, resulting in 18 rounds between the injection of the
last input block and the output of the first output block.

Themodificationswith respect to Pюћюњю result in a smallermemory footprint thanks
to the reduction of the belt size. The security level has been increased at the cost of perfor-
mance by introducing mill-to-belt feedforward and decreasing the ratio between bitrate
and mill size. Note that this is expected to result in a strong increase in security as it has
a threefold impact on the minimum backtracking depth (see Section 2.6).

13

Fig. 6. The structure of RюёіќGюѡҼћ

5.2 Investigations of RюёіќGюѡҼћ

We tried to get an idea of the securitymargin by investigating RюёіќGюѡҼћ[1], the version
with single-bit words. Thanks to its smalls state size of only 19 + 3× 13 = 58 bits, it is
feasible to find internal collisions using the birthday paradox. A set of about 258/2 = 229

random inputs likely contains a pair that cause an internal collision.
We looked for internal collisions by using inputs that could result in colliding pairs as

in Equation (1) with d = 7 and ℓ = 7. The input block p−7 is the first block of the input.
There are thus seven input blocks of preparation, that determine the absolute value of the
state before the differences can appear and that all the elements have in common. Eight
blocks are then input to RюёіќGюѡҼћ[1], that are chosen randomly for each input. In our
experiment we foundmore than 4 million internal collisions. The minimum backtracking
cost found was Cb = 46 and there were two trails with this cost. Then, a few internal
collisions had cost Cb = 51.

We were not confident in the safety margin of RюёіќGюѡҼћ and wanted to investigate
versions with larger word sizes. However, we soon realized that even for 2-bit words
randomly generating collisions was out of reach because the state size grew to 116 bits.

6 The road to Kђѐѐюј

Immediately after our publication of RюёіќGюѡҼћ in August 2006, we decided to create
a test bench for different configurations to gain more insight in the role of the belt and
the relation between the mill, belt and input sizes on the security margin. We called this
test bench Gћќяљіќ. The mill of Gћќяљіќ is composed of 11 words (instead of 17 or 19),
allowing the investigation of larger word lengths. By default, the round function operat-
ing on the mill is the same as in Pюћюњю or RюёіќGюѡҼћ, except for its size. For the belt
and feedforward we tried different configurations. The rate is 1 or 2 words, allowing us
to bracket the input to mill size ratio of RюёіќGюѡҼћ: 1

11 < 3
19 < 2

11 .
In our investigations with Gћќяљіќ we gained two insights that caused us to recon-

sider the design approach for our SHA-3 candidate. These are related to the role of the belt
and stream-versus-block considerations and made us switch from an alternating-input
belt-and-mill approach to a blockmode calling amonolithic permutation.We started con-
sidering this option in the last months of 2007 and made the final decision at the Early

14

Symmetric Crypto Seminar (ESC) in Echternach in January 2008. In the course of 2008
and 2009 a number of papers were published with (third-party) cryptanalysis of Rюёіќ-
GюѡҼћ. As discussed at the end of this section, most of these papers confirmed to us that
we had taken the right decision. We reported on our insights gained with Gћќяљіќ at the
Dagstuhl seminar in January 2009 [8].

6.1 The role of the belt

In Pюћюњю, the role of the belt is to guarantee a minimal length for collision trails: any
collision trail is at least 33-round long, due to the linearity of the belt updating function
and the fact that it evolves independently of the mill.

In RюёіќGюѡҼћ, the role of the belt is to provide long-term diffusion. A difference in
the mill can propagate to the belt and then come back later in the mill through the belt-to-
mill feedback. Due to the laĴer, the impact of the belt on differential trails becomes more
subtle. To illustrate this, consider a differential trail as in Table 2 with differences p′i in
the message blocks, a′i in the mill and b′i in the belt. The belt evolves linearly and so do
the differences. Hence, the difference in the belt b′i at round i is a linear function of the
message difference and on the differences at round i− 1: b′i = λ(a′i−1, b′i−1, p′i).

i ∆ input ∆ mill ∆ belt
0 p′0 a′0 b′0 = 0
1 p′1 a′1 b′1 = λ(a′0, b′0, p′1)
…

ℓ− 1 p′ℓ−1 a′ℓ−1 b′ℓ−1 = λ(a′ℓ−2, b′ℓ−2, p′ℓ−1)

ℓ p′ℓ a′ℓ = 0 b′ℓ = λ(a′ℓ−1, b′ℓ−1, p′ℓ) = 0

Table 2. General structure of a differential trail in a belt and mill hash function

A collision trail ends with a zero difference in the state: a′ℓ = 0 and b′ℓ = 0. The laĴer
results in v Boolean equations. These conditions can be replaced by linear conditions in
bits of a′ℓ−1, b′ℓ−1 and p′ℓ. In these equations one can eliminate the bits of b′ℓ−1 by linear
functions of message block differences and mill differences. By applying this iteratively,
all belt difference bits can be eliminated to end up in v linear Boolean equations in input
difference bits and mill difference bits.

In other words, the trail seen as a sequence of p′i and a′i must be compatible with
the belt-and-mill structure. This is expected to increase the minimum length for collision
trails, as a trail must be long enough to satisfy the v conditions. The impact of this effect
proportionally decreases when we consider longer trails. The number of conditions v is
fixed and the number of conditions per round in an ℓ-round trail is only v/ℓ.

While we expected the belt to bring added value at reasonable cost, it now turned out
that the effect of the belt on differential trails does not scale well with the trail length. At
first sight it may seem that the absence of short collision trails will have a positive effect
on the minimum backtracking depth. However, this was not confirmed by experiments
we did with Gћќяљіќ. We did a tree search for collision trails with truncation criterion the
backtracking depth of the partial trail. We observed that when this parameter is above a
certain threshold value, arbitrarily many collision trails of arbitrary (high) length can be
generated with the given backtracking depth. For instance, with 4-bit words, an 11-word
mill, and with a two-word rate this threshold backtracking depth is only 1.125. The found

15

trails have rather flat weight profiles where all round differentials have a weight near the
number of input bits. One can see this as a kind of steady-state statistical process.

So our experiments suggested that for interesting rate/mill-size enforcing a minimum
length in collision trails does not imply high backtracking depth. Moreover, a large belt
implies a large state, a disadvantage both in lightweight implementations and on high-
end CPUs when using registers. For these reasons we decided to abandon having a belt
altogether and rather increased the number of words in the mill.

6.2 From stream to blocks

In Pюћюњю and RюёіќGюѡҼћ, with their alternating-input structure, the message block
insertions alternate with the rounds. We wondered what would be the effect on the secu-
rity margin if instead we would insert two message blocks in the even-numbered rounds
and none in the other ones, and then further generalize this.

The number of bits inserted has an impact on generic aĴacks. For a constant state size,
increasing the input size means that the part of the state that the aĴacker cannot directly
control shrinks.

For specific aĴacks we consider the effect on the trail backtracking cost. For simplicity,
we compare the input of r bits every round with the input of 2r bits every two rounds
and we assume the same trail weight profile. We are aware that the difference in message
insertion will undoubtedly lead to optimal trails being different for the two cases, but
the average degrees of freedom per round are the same and hence we find it reasonable
to assume that the best trails have similar weight profiles. We consider in both cases the
values of H2j, H2j+1 and the maximum of the two.

In the first case, we get

H2j =max(H2j+1 + W2j − r, 0)

H2j+1 =max(H2j+2 + W2j+1 − r, 0)

→max(H2j+2 + W2j+1 + W2j − 2r, W2j − r, 0),

while in the second case

H2j =max(H2j+1 + W2j, 0)

H2j+1 =max(H2j+2 + W2j+1 − 2r, 0)

→max(H2j+2 + W2j+1 + W2j − 2r, W2j, 0).

It is clear that, for the same weight profile, lumping the insertion of message blocks
cannot decrease the backtracking cost. This was experimentally verified on Gћќяљіќ.

Ifwe extend this reasoning to a larger number of rounds,we tend to a blockmode, where
(relatively) large message blocks are inserted between the application of a sequences of
a (relatively) large number of rounds. The trail backtracking cost now gives a different
picture. Consider a sequence of ℓ rounds between two message block insertions. Then
Hℓ−1 = 0 and Hi = max(Hi+1 + Wi, 0) = Hi+1 + Wi, and the trail backtracking cost
becomesCb = ∑i Wi, where the sum of the round differential weights in the trail becomes
the determining quantity.

Compared to alternating-input, the block mode has the following advantages:

– The weight of a collision trail over a single block simply consists of the sum of the
weights of the round differentials

16

– The aĴacker can control part of the state only every ℓ rounds and hence conditions
must be transferred over more rounds.

A drawback is that trail clustering must be taken into account, as different trails can con-
tribute to the same differential.

Based on our analysis, we decided to abandon the alternating-input structure and go
for a blocked approach.

6.3 Third-party cryptanalysis of RюёіќGюѡҼћ

In the meanwhile RюёіќGюѡҼћ had caught the aĴention of the cryptographic community
and several papers were published in the course of 2008 and 2009. While the security
claim of RюёіќGюѡҼћ was not invalidated, most of these aĴacks confirmed to us we had
taken the right decision by abandoning alternating-input and belt-and-mill and go for a
block approach without a belt.

In an article presented at SAC 2008 Charles Bouillaguet and Pierre-Alain Fouque re-
ported on some interesting experiments with RюёіќGюѡҼћ[1] [19]. They showed how to
propagate conditions originating from a differential trail to a single round using Gröb-
ner bases. This turned out to be feasible thanks to the fact that the RюёіќGюѡҼћ round
function is quadratic and new (linear) conditions are introduced each round.

In their paper they also showed that the round differentials in the collision trails with
smallest backtracking cost found are not independent. Although we did not think these
results formed a threat for RюёіќGюѡҼћ, they did confirm our decision to change design
approach. Actually we believe the observed effects are an artefact from the method by
which the trails were generated: by finding actual collisions and deriving the trails from
them.

In a paper presented at Asiacrypt 2008, Michael Gorski, Stefan Lucks and Thomas
Peyrin performed slide aĴacks onGџіћёюѕљ andvariants of RюёіќGюѡҼћwith the padding
rule changed [29]. We considered this paper an interesting exercise but it did not force us
to adapt our design strategy as the analyzed variants of RюёіќGюѡҼћ lacked the elements
we put there to protect against this kind of aĴack.

At FSE 2009 Thomas Fuhr and Thomas Peyrin presented how to construct collision
trails using ameet-in-the-middlemethod [28]. They performed a tree searchwhere a vari-
ant of the backtracking cost is used to truncate efficiently. They found a collision trail
leading to an aĴack complexity of 211w and confirmed this number with a concrete colli-
sion for w = 2. The used collision trail has length 143 rounds, backtracking cost 11 and
backtracking depth 3.67. Remarkably, this collision trail is very long while it has a rel-
atively low backtracking depth. This confirmed what we observed in our experiments
with Gћќяљіќ (see Section 6.1). The authors concluded that even for larger RюёіќGюѡҼћ
instances collision trails can be found that would have an aĴack complexity below 29.5w

and hence invalidate the RюёіќGюѡҼћ security claim. We agree with this conclusion and
at the time of publication, this paper confirmed to us that for our SHA-3 candidate we
had taken the right decision to abandon streaming-based hashing.

In papers presented at Indocrypt 2008 and SAC 2009, Dmitry Khovratovich proposes
generalizations of truncateddifferential trails, also named structures for improving collision-
generating aĴacks on RюёіќGюѡҼћ (and also Gџіћёюѕљ) [32,33]. These aĴacks also con-
firmed to us we had taken the right decision by abandoning alternating-input and belt-
and-mill and go for a block approach without a belt.

17

7 The sponge construction

In this section we explain that the sponge construction originally was just a theoretical
concept for expressing security claims and thanks to our proof in the indifferentiability
framework it became suited for use in actual cryptographic functions.

7.1 The problem of the security claim

When designing and proposing a cryptographic primitive, it is important to understand
and state which security criteria it satisfies. For cryptographic hash functions, the estab-
lished security criteria are collision resistance, pre-image resistance and 2nd pre-image
resistance [38]. Often no explicit claims are made and the hash function is supposed to
offer a security level implied by the length of its digest. Unfortunately, these criteria do
not fully cover what we have come to expect of a cryptographic hash function. Sometimes
hash functions are applied to destroy some mathematic properties of a public key prim-
itive such as RSA [35]. In use cases such as straightforward use for computing message
authentication codes (MAC), resistance against length-extension [43] is a requirement. In
the years preceding our work on RюёіќGюѡҼћ, a series of aĴacks [30,31,23,34] had shown
that certain hash function constructions do not offer asmuch security as expected, leading
to the introduction of yet other criteria, such as chosen target forced prefix preimage resistance
[34]. As was already predicted in [1], there is no reason to assume that no new criteria will
appear, so the design of a hash function seemed like a moving target.

Remarkably, a random oracle [3] is a theoretical construction that satisfies all known
security criteria for hash functions and it seems hard to imagine that new security criteria
will be introduced that a random oracle does not satisfy. So a plausible solution to this
problem seems to replace all security criteria by a single one: a good hash function behaves
as a random oracle. There are however a number of problems with this approach.

Informally speaking, a random oracle maps a variable-length input message to an
infinite output string. It is completely random, i.e., the produced bits are uniformly and
independently distributed. The only constraint is that identical input messages produce
identical outputs. A hash function produces only a fixed number of output bits, say, n
bits. So, a hash function should behave as a random oracle whose output is truncated to
n bits. In general, it is easy to compute the resistance of a random oracle (truncated to n
bits) to certain aĴacks. For instance, the expected number of calls to the oracle to generate
a collision is of the order of 2n/2. To find a (second) pre-image, this number is 2n. The hash
function is then considered broken if someone finds an aĴack on the hash function with
a complexity smaller than for a random oracle.

When we published RюёіќGюѡҼћ, we wanted to have a compact security claim. How-
ever, it was clear thatwe could notmake a truncated randomoracle claim for RюёіќGюѡҼћ
due to its arbitrary output length. By just increasing the output length, it would be pos-
sible to increase the resistance against collisions and (second) preimages indefinitely. In
fact, the finite size of the state in RюёіќGюѡҼћ puts an upper limit to the security that can
be achieved. RюёіќGюѡҼћ shares this property with most practical hash functions that it-
eratively update a chaining value of fixed size with a function taking a message block as
an argument.

Iterated hash functions have state collisions, that is, collisions in the chaining value.
The existence of state collisions results in properties that do not exist for random oracles.
For instance, assume that M1 and M2 are two messages that form a state collision in an
iterated hash function. Then, for any suffix N, themessages M1|N and M2|N will produce
identical hash values. A random oracle does not have this property: even if M1 and M2

18

produce the same hash value (of finite length n), M1|N and M2|N produce hash values
that are independent of the hash value obtained from M1 and M2.

In the light of state collisions, the claimed reference model cannot be a random ora-
cle as it is an unreachable goal. There are two ways to address this problem. First, one
can abandon iterated hash functions and use non-streamable hash functions such as the
zipper hash construction [36]. This is however unsuitable for many applications of hash
functions since the entire message must be available in memory. A second approach is to
stick to iterated hash function constructions and learn to live with state collisions. This is
the approach we followed by trying to define a reference model that is as close as possible
to a random oracle, but exhibits state collisions.

Our first aĴempt to such a reference model appeared in [4] by the name of random
iterative mangling functions (IMF). Later we decided to spend some time to refine this ref-
erence model and soon this secondary thread became a research subject of independent
interest. The random IMF went through some modifications and lead to random sponges.
We presented our random sponge concept first at the Dagstuhl seminar in January 2007.
Later we wrote our findings in a paper [5] that we presented at the Ecrypt hash workshop
in Barcelona in May 2007.

7.2 Specification of the sponge construction

The sponge construction [5] builds a function Ѡѝќћєђ[f , pad, r] with variable-length in-
put and arbitrary output length using a fixed-length permutation (or transformation) f ,
a padding rule “pad” and a parameter bitrate r.

The permutation f operates on a fixed number of bits, the width b. The sponge con-
struction has a state of b bits. First, all the bits of the state are initialized to zero. The input
message is padded with the function pad[r] and cut into r-bits blocks. Then it proceeds in
two phases: the absorbing phase followed by the squeezing phase:

Absorbing phase The r-bit input message blocks are XORed into the first r bits of the
state, interleaved with applications of the function f . When all message blocks are
processed, the sponge construction switches to the squeezing phase.

Squeezing phase The first r bits of the state are returned as output blocks, interleaved
with applications of the function f . The number of iterations is determined by the
requested number of bits.

Finally the output is truncated to the requested length. The sponge construction is illus-
trated in Figure 7.

The value c = b − r is called the capacity. The last c bits of the state are called the
inner part and its first r bits are called the outer part. The bits of the inner part are never
directly affected by the input blocks and are never output during the squeezing phase.
The capacity c actually determines the aĴainable security level of the construction [7,14].

7.3 Provable security reductions and generic security

In [5] we proved that the success probability of distinguishing a sponge calling a random
permutation (or transformation) f from a random oracle is upper bound by N22−(c+1)

with N the number of calls to f . This is basically the success probability of generating
state collisions.

Our first application of the sponge construction was the reformulation of the security
claim for RюёіќGюѡҼћ on the RюёіќGюѡҼћ site in the summer of 2007. We defined a sim-
plified security claim, called a flat sponge claim where the security level is summarized in

19

Fig. 7. The sponge construction

a single parameter: the capacity. We made a flat sponge claim for RюёіќGюѡҼћ[w] with
a capacity cclaim = 19w. For the 64-bit version RюёіќGюѡҼћ this results in an excessive
capacity of 1216 bits, for the 32-bit version this gives 608. Clearly, we were puĴing the bar
very high.

A limitation of our proof in [5] is that the adversary is not given direct access to f .
Initially this was no problem for us as we considered sponge functions just as security
references. In our struggle with RюёіќGюѡҼћ and Gћќяљіќ we had started to consider
the possibility of using the sponge construction in an actual design and so it would be
nice to have security bounds against generic aĴacks. Unfortunately, our proof could not
provide that for the simple reason that in any concrete function f would be publically
specified and we should have a proof against an adversary having direct access to f (and
its inverse).

We learned that such proofs can be made in the indifferentiability framework [37]
and it had effectively been applied to iterated hash functions in [23]. We applied this to
the sponge construction and presented our result at Eurocrypt 2008 [7]. In this paper we
proved that any generic aĴack on a sponge function has success probability of at most
N22−(c+1) plus the success probability of this aĴack on a random oracle. This opened up
the sponge construction as a tool for design, with a tight security bound against generic
aĴacks.

7.4 The hermetic sponge strategy

In RюёіќGюѡҼћ there is a gap between the size of its inner state and the capacity cclaim used
in its security claim. This accounts for the fact that the round function is not designed to be
a strong cryptographic primitive by itself and thus reflects the acceptance that it does not
prevent aĴacks that are beĴer than generic ones. The design philosophy of RюёіќGюѡҼћ
is to avoid internal collisions in the absorbing phase and to decorrelate the output from
the input using blank rounds.

Whenwe startedworking onwhatwould becomeKђѐѐюј,we adopted a very different
design philosophy that we called the hermetic sponge strategy [15]. Its main principle is to
instantiate a sponge function with a permutation that should be so strong that it does not
allow aĴacks beĴer than generic ones. This design strategy tolerates no gap between the

20

claimed security level and the capacity of the sponge construction used, namely, csponge =
cclaim.

Designing and analyzing such a strong permutation is very much like design and
analysis of a block cipher in a known-key seĴing: differential and linear trail propagation,
algebraic analysis, clustering of trails and truncated aĴacks, etc.

There are however two important differences with a block cipher. The first difference
is that it has no key schedule, so there is no need to design one. There needs to be some
asymmetry between the rounds to avoid slide aĴacks [18]. This can be addressed by in-
cluding the addition of round constants that differ from round to round to the state. These
constants may also provide asymmetry to the round function to avoid symmetric prop-
erties (see Section 8). The second difference is that the inverse of the round function does
not have to be efficient as in the sponge construction the inverse of f is never called. This
givesmore degrees of freedom to the designer andmay allow achieving the same security
level in a more efficient way.

8 Kђѐѐюј

After deciding to adopt the hermetic sponge strategy, we had to design a strong permu-
tation. From the beginning, it was clear this would have an iterated structure, repeat-
ing a simple round function diversified by round constants for asymmetry. The starting
point for designing this round function were the belt updating functions of Pюћюњю, Rю-
ёіќGюѡҼћ and Gћќяљіќ. We wanted to keep the high amount of symmetry, the general
structure of having separate steps for the non-linearity, mixing and bit transposition and
the scaleability by means of variable-length words. In the first six months of 2008 we con-
verged reasonably quickly to what would become Kђѐѐюј- f : the permutations at the core
of Kђѐѐюј. In this section we report on this process.

8.1 Increasing the diffusion

Our first aĴention point was the mixing layer θ. In differential trail propagation experi-
ments with Gћќяљіќ we had noticed that the diffusion was less than we would like.

We set out to modify θ to have a beĴer average diffusion, while keeping an eye on
implementation cost. In RюёіќGюѡҼћ and its predecessor, the mixing layer θ is basically
a linear convolutionalmapping with periodic boundary conditions and its operation on a
single-bit slice of the words can be modeled as multiplication by a polynomial p(x)mod-
ulo xn + 1 [24]. Here the state value is interpreted as a binary polynomial and n equals
the number of words. In RюёіќGюѡҼћ, p(x) has three terms and the number of operations
per bit is 2 bitwise additions. A single-bit difference propagates to 3 bits. The worst-case
diffusion is expressed by the (bit-level) branch number [24] and is 4. Increasing the dif-
fusion can be done by adopting a polynomial with more terms. By taking a polynomial
p(x) with w terms a single-bit difference propagates to w bits and by a judicious choice
a branch number equal to w + 1 can potentially be achieved. The downside is that this
increases the cost from 2 bitwise additions per bit to roughly w− 1 bitwise additions per
bit.

The propagation from single-bit differences can be greatly increased at almost no cost
by the following trick. Let the number of words n be a product of two factors: n = n1n2
and a multiplication polynomial p(x) of the following form:

p(x) = 1 + ∑
0≤j<n2

x1+jn1 .

21

This polynomial has n2 + 1 terms so a single-bit difference propagates to n2 + 1 bits. At
first sight, the implementation cost is n2 + 1 bitwise addditions per bit.

We can express the new value of bit in position i as:

bi = ai + ∑
0≤j<n2

ai+1+jn1 = ai + ci+1(a) with ci(a) = ∑
0≤j<n2

ai+jn1 . (2)

Clearly ci(a) = ci+jn1 for all j. This suggests a two-stage implementation approach:

– Compute ci(a) for all i : 0 ≤ i < n2. This additional stage takes n1(n2 − 1) binary
additions

– Compute bi = ai + ci mod n2 . This takes n binary additions

It follows that the implementation cost of this mapping is only 2− 2/n1 binary additions
per state bit. The downside is that the branch number is only 4: a two-bit difference with
bits in positions rn1 apart will go through this mapping unaffected. This is because all
terms ci(a) will be zero.

The propagation from single-bit differences can practically be doubled at very liĴle
additional cost by taking for p(x):

p(x) = 1 + ∑
0≤j<n2

x1+jn1 + ∑
0≤j<n2

x−1+jn1 .

or equivalently:

bi = ai + ci−1(a) + ci+1(a) = ai + di(a) with di = ci−1(a) + ci+1(a).

A three-stage implementation of this can be realized by adding a new stage computing
the terms di for all i : 0 ≤ i < n2. This takes in total n2 binary additions or 1/n1 per
state bit, resulting in a total cost of 2 binary additions per state bit. With respect to the
θ mapping in RюёіќGюѡҼћ the branch number has not been increased but a single bit
difference propagates to 2n1 + 1 bits instead of just 3.

8.2 From a two-dimensional to a three-dimensional structure

The nonlinear step γ in the RюёіќGюѡҼћ round function is also a convolutional mapping
with periodic boundary conditions. We replaced it by its complement, that was already
studied in [24] and named χ. In our first aĴempts at the round function, it operated on
the n-bit array of words. We did not change the definition of the intra-word rotations of
ρ. However, the generalization of the word transposition of ρ of type bi = agi mod n (with
g coprime to n) posed a problem: it leads to trails of arbitrary length with a low weight
per round. We will now show how.

In this discussion a specific symmetry property plays an important role. In fact, all
mappings in the round function of Pюћюњю, RюёіќGюѡҼћ and Gћќяљіќ (except the round
constant addition ι) commutewith the operation of cyclically shifting allwords of the state
over the same offset. The result of this is that propagation structures that are not affected
by the addition of round constants for a given word length w can be used to construct
propagation structures forword lengths that are amultiple ofw bymere duplication. This
is still the case for the final version of Kђѐѐюј and we call this the Matryoshka structure.
We refer the interested reader to [15] for a more in-depth discussion.

For the discussion in this section we use the Matryoshka structure to extend differ-
ential trails in the single-bit word version to trails in versions with w-bit words by just
replacing each word equal to 1 by 1w and each word equal to 0 by 0w.

22

Consider a version with single-bit words. We apply a difference with two active bits
a multiple of n1 positions apart, say positions 0 and rn1. First, isolated active bits pass
through χ unchanged with probability 1/4. The two-bit paĴern also passes through θ
unchanged because all ci(a) terms will be zero. Then ρ moves these bits to positions 0
and grn1 mod n. The result is again two active bits a multiple of n1 positions apart that
will enter the next round. This can be repeated indefinitely leading to a differential trail
with a weight of only 4 per round. Applying the Matryoshka principle one can construct
a differential trail for word size w with weight 4w per round.

The obvious solution to this problem is to change the word transposition in ρ. A possi-
ble route is adopting a different type of function f (x) for computing the new index from
the old index in: bi = a f (i).We tried different options butwere not satisfiedwith the result.
Then the structure of θ gave the key to the solution we adopted.

The terms ci(a) in θ naturally partition the n words in n2 subsets of each n1 words. We
can arrange thewords of the state as n2 columns each containing n1 words. The expression
ci(a) then becomes the bitwise addition of all words of column i. The effect of θ is simply
the addition to each word of the parities of the two neighboring columns. In this new
structure, the position of a word in the state is determined by a couple of indices (x, y). In
the following, we call a set of bits in the same slice with common y coordinate a row and
with common x coordinate a column andwe can index the slices with coordinate z. Hence,
the state is a three-dimensional array and the position of a bit in the state is determined
by a triplet (x, y, z).

The two-dimensional arrangement of words imposes a choice for χ. In RюёіќGюѡҼћ
the words of the state form a single circular array and γ (complement of χ) is applied to
its slices independently. With the new structure, we can either arrange the words of the
state in a single array, or have χ operate on n1 circular arrays. We decided to go for the
laĴer option and let χ operated on the n1-bit rows separately.

The arrangement ofwords in a two-dimensional array opened up newpossibilities for
the word transposition in ρ, that we gave a dedicated name at this point: π. In the light
of low-weight trail problem, the task of π is to move active bits in a column to different
columns. A simpleway to achieve that is to apply an operation like ShiftRows in Rіїћёюђљ
[27]. If the number of rows n1 is not smaller than the number of columns n2 this moves
the bits in a column to n1 different columns. Still, the ShiftRows solution has a remaining
undesired property.

Consider again a single-bit word version. A difference with all bits in a row active and
all other bits passive will pass through χ unchanged with probability 21−n2 . It will also
pass through θ unchanged as all column parities will be 1 and hence di = ci−1(a)+ ci+1(a)
will be zero. It will also pass through π unchanged and hence appears unchanged at the
input of the next round. This results in a trail of arbitrary length with a weight of only
n2 − 1 per round. Applying Matryoshka results in a trail for word size w with weight
(n2 − 1)w per round.

This problem will occur for any π that does not move bits in a row to different rows.
So we needed to find a function (x, y) = f (x′, y′) that computes the new coordinates of a
bit (x, y) from the old coordinates (x′, y′) such that bits in the same column are moved to
different columns and that not all bits in a row are moved to the same row. Looking into
this problem, we saw that taking n1 = n2 allowed an elegant solution that generalized
both the ρ word transposition in RюёіќGюѡҼћ and ShiftRows of Rіїћёюђљ. It is a linear
function f defined by: (

x
y

)
=

(
a b
c d

)(
x′

y′

)
23

with addition and multiplication in Zn1 . This type of mapping has interesting properties
and lends itself for analysis. For example, it maps the points arranged in straight lines to
straight lines.

In the new arrangement, θ can be expressed in a very simple way: it updates each bit
of the state by adding to it the parities of the two neighboring columns in the same slice.
The subset of all states that have an even parity in each column is the (column parity) kernel.
For any state in the column parity kernel, θ behaves as the identity.

Note that π, χ and θ operate independently on slices.

8.3 Determining the dimensions
The value of n1 in Kђѐѐюј- f was determined by three elements:
– the NIST SHA-3 security requirements
– the fact that χ is not invertible for even lengths
– our wish for Kђѐѐюј- f to be efficient on 64-bit processors
In its call for SHA-3 proposals [39], NIST required 4 output lengths n: 224, 256, 384

and 512 bits. For each of these lengths it required a resistance against collisions of 2n/2,
preimages of 2n and second preimages of 2n/ℓ calls to the hash function, with ℓ the length
of the first message.

From the start wewanted to address all four output lengths with a single permutation
and adapt the capacity to the required security level. In our original sponge paper [5], we
had given a generic algorithm for generating a second preimage in 2c/2 calls to the under-
lying permutation. Hence to formally satisfy the second preimage security requirement,
we had to take a capacity of 1024 bits for our 512-bit SHA-3 candidate. In order to have
a reasonable performance, we figured the bitrate should not be smaller than one third of
the state, and this put a lower bound on the width of Kђѐѐюј- f of about 1500 bits. For the
256-bit SHA-3 candidate this would give a comfortable bitrate equal to two thirds of the
width, making it twice as fast as the 512-bit SHA-3 candidate.

Due to the fact that χ is not invertible for even lengths and it operates on n1-bit rows,
n1 must be odd. Taking n1 = 3 would impose a minimum word size of 1500/9 ≈ 160.
Taking n1 = 5 and a word size of 64 bits would result in a permutation width of 1600 bits
and the combination n1 = 7 with 32-bit words would result in a 1568-bit permutation. A
priori a 5-column version would be more efficient on 64-bit CPUs, dominant in high-end
CPUS and a 7-column version would be more efficient on 32-bit CPUs, widely applied in
embedded devices. However, we noticed that it is easier to implement 64-bit word step
mappings on 32-bit CPUs than vice versa.

To avoid confusion between the CPU words and the words in the state, we renamed
the laĴer to lanes at this point. The operations for which the lane size really maĴers are
the lane rotations is ρ and θ. If the CPU word size equals the lane size, it can be imple-
mented with cyclic shift instructions. If the CPU word size is smaller than the lane size,
in a straightforward implementation each lane is coded in multiple words. For example,
a 64-bit lane is split in two 32-bit words, with bits 0− 31 in one word and bits 32− 63
in the other. Performing the rotation to a lane takes multiple shift and bitwise Boolean
operations. With the technique of bit-interleaving [17], the bits of a lane are organized dif-
ferently. In its simplest form, namely factor-2 interleaving, it groups the bits of a lanewith
odd index in one word and the ones with even index in another. The rotations in θ and ρ
can now be performedwith cyclic shifts on 32-bit words, making them efficient on a 32-bit
processor. The computational cost of the conversion of the input message into this rep-
resentation is small compared to the evaluation of the permutation itself. So 64-bit lanes
can be efficient on 32-bit CPUs but not vice versa. This favours the 5× 5× 64 option.

24

RюёіќGюѡҼћ had a size parameter in the form of its word size andwas defined for any
value in the range 1 to 64. For Kђѐѐюј- f , we also wanted to support multiple sizes. How-
ever, we restricted the lane size to powers of two: 1, 2, 4, 8, 16, 32 and 64. The reason for
this is that the rotation constants in ρ have good distributions if the lane size is a power of
two, while this is not necessarily the case for other lane size values. Moreover, this choice
limits the number of instances to analyze with an eye on our security claims while it also
optimizes the use of theMatryoshka principle in the analysis. The supported permutation
widths range from toy versions of sizes 25 and 50, useful in performing experiments, over
lightweight permutation with a relatively small state 100, 200, 400 to high-speed versions
of 800 and 1600 bits.

8.4 Tweaking the θ mixing layer

For determining the remaining parameters we did a number of experiments. We made a
test bench of Kђѐѐюј- f with the π matrix as a configurable parameter, a number of differ-
ent choices for mappings from (x, y) to i for ρ and different orders of the step mappings.
We started conducting differential and linear trail analysis and experiments with the al-
gebraic normal form (ANF) on these versions with the goal to gain insight for making a
good choice.

When looking at the versionswith 2-bit lanes,we found something remarkable.Namely,
in the trails with lowest weight, often paĴerns occurred where the columns in one of the
two slices had all odd parity, with often a single active bit per column. Note that these
paĴerns are not in the column parity kernel but for which θ still acts as the identity. Com-
puting the number of such paĴerns with Hamming weight 5 and comparison with the
kernel reveals why they occur so often. In Kђѐѐюј- f [50] the kernel contains 200 paĴerns
with Hamming weight 2 and 4550 with Hamming weight 4. The number of paĴerns with
Hamming weight 5 for which θ acts as the identity is 6250. Moreover, if these 5 bits are
not mapped to 5 different rows at the input of χ, the contribution to the weight is less
than 2 times the number of active bits. In the worst case all bits are mapped to the same
row, contributing only 4 to the weight.

We decided to look at alternatives for our initial choice of θ that would solve this prob-
lem. From the different options we considered, the following surfaced as achieving the
best improvement with reasonable additional implementation cost. Instead of adding to
each bit the parities of the two neighboring columns in the same slice, in our improved
version one of these columns is in the neighboring slice. In a straightforward software
implementation this can be realized by 5 additional cyclic shifts. For the previously prob-
lematic 5-bit paĴerns, the new θ flips all bits of the paĴern. Generally speaking, the paĴern
outside the column parity kernel with the smallest Hamming weight for which θ acts as
the identity now has an active bit in each column of the state. For Kђѐѐюј- f [50] this result
in at least 10 active bits and for Kђѐѐюј- f [1600] this is 320. A side effect of this modifica-
tion is that the inverse of θ changes drastically. The inverse of the old θ has a structure
similar to θ itself: it consists of adding to each bit the parities of the two columns in the
same slice that are not adjacent to it. For the new θ, it consists of adding the parities of
about half of the columns in the state. To obtain a difference with a single active bit at the
output of θ, about half of the bits of the state at its input must be active.

8.5 Determining the π transposition matrix

From a first thought experiment followed a constraint on the π matrix. In fact, π is a
permutation operating over a set of 25 elements and can be described by a number of

25

cycles. Due to its linearity, the origin (0, 0) always maps to the origin. We can define axes
in 6 directions:

– Horizontal: points with y = 0
– Vertical: points with x = 0
– Slope 1: points with y = x
– Slope −1: points with y = −x
– Slope 2: points with y = 2x
– Slope −2: points with y = −2x

Thanks to its linearity, π moves the 5 points on an axis to 5 points on an axis. So at the
axis level, π can again be described as a number of cycles.

Earlier in our analysis we have already used several times the property of χ that a
row with a single active bit it its input appears unchanged at its output with probability
1/4 (so weight 2). It follows that for difference paĴerns in which all active rows have a
single active bit, χ acts as the identity with probability 2−2a with a the number of active
rows. If we model χ as the identity, all step mappings are linear and the input difference
determines all differences in a trail. A difference paĴern that is in the kernel at the input of
θ goes through θ unchanged and so leaves the number of active bits invariant. A possible
strategy for finding a low-weight differential trail is to define an input difference that
results in paĴerns that are in the kernel for as many rounds as possible.

With χ and θ both equal to the identity, the round function is reduced to the bit trans-
position π ◦ ρ. For simplicity, let us focus on a single-slice version, where even ρ becomes
the identity and only π remains. Let us consider the number of independent conditions
imposed by being in the kernel for 1, 2, 3, …rounds. For a single round, membership in
the kernel translates to 5 linear equations: each column must have an even number of
active bits. So for a single round the fraction of all paĴerns that is in the kernel is 2−5.

Adding one round results in 5 additional equations at the input of the second round.
These equations can be transferred over π to equations at the input of the first round. If π
maps columns to columns, these equations are the same as for the first round and hence
can be discarded. If π maps e.g. lines with slope 1 to columns, it results in 5 additional
equations expressing that the parity of bits in lines with slope 1 shall be zero. Of the re-
sulting 10 equations only 9 are independent: the sum of the 5 column parity equation and
the sum of the 5 slope-1 parity equations both state that the parity of the full slice must
be even. So the fraction of states in the kernel in two successive rounds is 2−9.

This reasoning can be extended by adding more rounds. When adding the n-th round
in the case that πn maps the vertical axis to itself, no new equations are added. Otherwise,
4 new equations are added. It follows that if π cycles through all 6 axes, the total number
of independent linear equations for staying in the kernel for more than 5 rounds is 5 +
4 + 4 + 4 + 4 + 4 = 25. Applying the 25 linear equations reduces the space of 225 possible
paĴerns to a single one: the all-zero paĴern. If in π the vertical axis is in a cycle with
period n < 6, the number of conditions to stay in the kernel for n rounds or more is
4n + 1 < 25. This is the main reason for choosing a π that runs through all axes in a single
cycle. Note that this reasoning can be generalized to the multi-slice case, leading to the
same conclusion.

8.6 The configuration of ρ

InRюёіќGюѡҼћ the shift offsets of the intra-word rotations are expressed as i(i− 1)/2with
i the word index. However, in Kђѐѐюј- f the lanes have two-component indices (x, y).
Hence we needed to abandon the offset recipe of RюёіќGюѡҼћ or to define a mapping

26

between (x, y) and i. We considered different options but the following one struck us
as more elegant than all others. There are matrices for π such that the 24 lane positions
outside the origin form a single cycle. This provides a natural mapping between (x, y)
and the sequence i. This restricted our choice of π matrices to those with order 24. From
our experiments with the test bench no single candidate stood out and we took the one
with the simplest look (with elements 0, 1, 2, 3).

8.7 The round constants

The round constants are there to disrupt symmetry, both in the temporal as in the three
spatial dimensions. We decided to apply round constants in the lane in position (0, 0)
and only non-zero in a single bit position in Kђѐѐюј- f [25], two positions in Kђѐѐюј- f [50],
. . . up to seven bit positions in Kђѐѐюј- f [1600]. The bits of the round constants are dif-
ferent from round to round and are taken as the output of a maximum-length eight-bit
linear feedback shift register. We tested the asymmetry introduced by the round con-
stants bymeans of a number of experiments making use of the algebraic normal form [15,
Sect. 4.1.2].

8.8 The order of steps within a round

The round function consists of 5 step mappings and that a priori can be arranged in
5! = 120 different orders. However, thanks to the fact two of the five steps are mere bit
transpositions and there is only a single nonlinear step, these orders can be partitioned
in a small number of subsets where the orders within a set have equivalent propagation
properties.

Still, an essential choice is whether the nonlinear layer χ comes before themixing layer
θ or after it. We chose to put θ before χ for the following reason. In keyed applications of
Kђѐѐюј the adversary does not know the value of of the inner part of the state and may
know the value of the outer part of the state. By puĴing the mixing layer θ before the
non-linear layer χ, the unknown inner part whitens the χ input. If π would come before
θ, for at least part of χ no such whitening would be present. Finally, the bit transpositions
can be put at the beginning (or end) of the round or between θ and χ. We chose for the
laĴer option based on the results of trail propagation experiments on Kђѐѐюј- f [50] and
Kђѐѐюј- f [100]. The final order is ι ◦ χ ◦ π ◦ ρ ◦ θ.

8.9 The number of rounds

In our original SHA-3 submission [6,10], we took 12 rounds for Kђѐѐюј- f [25] and added
one round for each doubling of the permutationwidth. This was based on our estimations
of the maximum number of round that could possibly be aĴacked and adding a comfort-
able safetymargin.Moreover, at the timewenaively believed that adding a rounddoubles
the algebraic degree of the permutation up to b− 1.

During the first round of the SHA-3 competition Jean-Philippe Aumasson and Willi
Meier published their zero-sum distinguishers in [2] that exploited the low algebraic degree
of the Kђѐѐюј- f round function and its inverse. In theory, these zero-sum distinguishers
can be used to distinguish reduced-round variants of Kђѐѐюј- f [1600] up to 16 rounds
from a random permutation. However, as we described in [11], the relevance of these
distinguishers for the security of Kђѐѐюј is very small. Still, in our view of the hermetic
sponge strategy at the time, we wanted the underlying permutation to have no structural
distinguishers, independent of their applicability in actual aĴacks on Kђѐѐюј. As for the

27

second round of SHA-3 the semi-finalists had the permission to tweak their proposals,
we decided to augment the number of rounds in Kђѐѐюј- f from 12 + ℓ to 12 + 2ℓ (from
18 to 24 rounds for Kђѐѐюј- f [1600]). Sticking to 18 rounds would have left a security
margin of only 2 rounds against a distinguisher of Kђѐѐюј- f . We believed that the new
definition leads to amore homogeneous safetymargin: the number of rounds inKђѐѐюј- f
is essentially twice the maximum number of rounds we believe to be aĴackable when
used in a Kђѐѐюј instance. Moreover, at the timewe naively believed it would sufficiently
increase the algebraic degree of both the permutation and its inverse, as exploited in zero-
sum distinguishers.

During the second round of the SHA-3 competition, the zero-sum distinguishers were
further refined byChristina Boura andAnneCanteaut in two papers [21,20] extending the
distinguishers up to 20 rounds in [20]. They were later joined by Christophe De Cannière
in [22] and extended the distinguisher to the full 24 rounds of Kђѐѐюј- f [1600]. Finally,
Ming Duan and Xuejia Lai achieved a slight reduction of the data complexity of this dis-
tinguisher. These results have themerit of explaining the evolution of the algebraic degree
with the number of rounds in a wide class of block ciphers and permutations.

By this time we realized that these zero-sum distinguishers did not jeopardize the
hermetic sponge strategy thanks to their large data complexity. For Kђѐѐюј- f [1600] ex-
ploiting a zero-sum distinguisher requires 21575 calls to the permutation while flat sponge
claim does not make any statements about the security against aĴacks requiring more
than 2c/2 calls. As c < b, this is at most 2799.5. So when Kђѐѐюј was chosen as one of the
five finalists in the SHA-3 competition, we decided not to tweak the number of rounds
any longer, despite the existence of a full-round distinguisher. Wemotivated our decision
in our presentation at the Second SHA-3 candidate conference in Santa Barbara in August
2010 and in the documentation of our SHA-3 third-round submission [15,16].

8.10 The padding of the input

In our original SHA-3 submission [6,10], we had a padding rule that appends an encod-
ing of the rate and a single-byte diversifier. For inputs that consist of an integer sequence
of bytes, this rule appended more than 3 bytes. This was not so much a problem for the
sponge construction, but was a real overhead for the related duplex construction, that we
were working on at the time [9,13]. The main purpose of the diversifier was domain sepa-
ration between different SHA-3 candidates and the inclusion of the rate for the joint secu-
rity of multiple Kђѐѐюј instances based on the same Kђѐѐюј- f instance but with different
rates. We refer to [10] for a more detailed motivation.

During the second round of the SHA-3 competition, we had discovered that the joint
security of multiple Kђѐѐюј instances with different rates can be achieved with a much
simpler padding. We called it multi-rate padding and it consists of appending a single 1-
bit, n 0-bits and again a single 1-bit, with n the smallest number such that the length of
the result is a multiple of the rate. For byte-sequence inputs, this appends only a single
byte at least. So for the third-round submission, we replaced our original padding by the
multi-rate padding. We achieved domain separation between our SHA-3 candidates for
different output lengths by adopting capacity values equal to twice the output length,
hence resulting in 4 different capacity values.

8.11 Specification of Kђѐѐюј

In this subsection we give a compact specification of Kђѐѐюј. For the full specification we
refer to [15].

28

There are 7 Kђѐѐюј- f permutations, indicated by Kђѐѐюј- f [b], where b = 25× 2ℓ and
ℓ ranges from 0 to 6. The lanes have size w = 2ℓ. The name Kђѐѐюј covers all sponge
instances with multi-rate padding and any of the Kђѐѐюј- f permutations and compatible
r and c values, i.e. c + r = b.

The steps of the round function of Kђѐѐюј- f are specified as operating on a three-
dimensional state a with a bit in position (x, y, z) denoted by ax,y,z with x, y ∈ Z5 and
z ∈ Zw. In our description, we may sometimes omit the z index, both y and z indices or
all three indices, implying that the statement is valid for all values of the omiĴed indices.

The number of rounds in Kђѐѐюј- f [25× 2ℓ] is nr = 12 + 2ℓ. A single round consists
of a sequence of five steps:

θ : ax,y,z ← ax,y,z + cx−1,z + cx+1,z−1 with cx,z =
4

∑
y=0

ax,y,z

ρ : ax,y,z ← ax,y,z−(t+1)(t+2)/2

with t satisfying 0 ≤ t < 24 and
(

0 1
2 3

)t (1
0

)
=

(
x
y

)
or t = −1 if x = y = 0

π : ax,y ← ax′,y′ , with
(

x
y

)
=

(
0 1
2 3

)(
x′

y′

)
χ : ax ← ax + (ax+1 + 1)ax+2

ι : a ← a + RCir

The round constants are given by

RC[ir]0,0,2j−1 = rc[j + 7ir] for all 0 ≤ j ≤ ℓ,

and all other values of RC[ir]x,y,z are zero. The values rc[t] ∈ GF(2) are defined as:

rc[t] =
(

xt mod x8 + x6 + x5 + x4 + 1
)

mod x in GF(2)[x].

9 The future: permutation-based cryptography

In this paper we have described how Kђѐѐюј is the result of a long and iterative design
process. But it is not an endpoint. Soon after we adopted the sponge construction for de-
sign, we realized that on top of hashing, it can also be used as a stream cipher, for MAC
computation and as a mask generating function. In the summer of 2009 we started con-
sidering sponge variants with simultaneous input and output of data, as if the absorbing
phase and squeezing phase would overlap. It turned out that we could model this as a
mode of use on top of the sponge construction. This resulted in a paper on reseedable
pseudorandom sequence generation that we presented at the CHES workshop in August
2010 [12]. We then formalized this in the so-called duplex construction and proposed a
number of modes on top of it, including an efficient authenticated encryption mode. We
presented this at the second SHA-3 candidate workshop in August 2010 [9]. The sponge
and duplex constructions allow to build all symmetric cryptographic services on top a
fixed-width permutation. As such, one of the by-products of the Kђѐѐюј design process
is a new branch of symmetric crypto: permutation-based cryptography.

29

References

1. R. Anderson, The classification of hash functions, Proceedings of the IMA Conference in Cryptography and
Coding, 1993, 1993.

2. J.-P. Aumasson and W. Meier, Zero-sum distinguishers for reduced Keccak-f and for the core functions of Luffa
and Hamsi, Available online, 2009, http://131002.net/data/papers/AM09.pdf.

3. M. Bellare and P. Rogaway, Random oracles are practical: A paradigm for designing efficient protocols, ACM
Conference on Computer and Communications Security 1993 (ACM, ed.), 1993, pp. 62–73.

4. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, RюёіќGюѡҼћ, a belt-and-mill hash function, Second
Cryptographic Hash Workshop, Santa Barbara, August 2006, http://radiogatun.noekeon.org/.

5. , Sponge functions, Ecrypt Hash Workshop 2007, May 2007, also available as public comment to
NIST from http://www.csrc.nist.gov/pki/HashWorkshop/Public_Comments/2007_May.html.

6. , Kђѐѐюј specifications, NIST SHA-3 Submission, October 2008, http://keccak.noekeon.org/.
7. ,On the indifferentiability of the sponge construction, Advances in Cryptology – Eurocrypt 2008 (N. P.

Smart, ed.), Lecture Notes in Computer Science, vol. 4965, Springer, 2008, http://sponge.noekeon.
org/, pp. 181–197.

8. , The road from ѝюћюњю to јђѐѐюј via џюёіќєюѡҼћ, Symmetric Cryptography (Dagstuhl, Germany)
(H. Handschuh, S. Lucks, B. Preneel, and P. Rogaway, eds.), Dagstuhl Seminar Proceedings, no. 09031,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2009.

9. ,Duplexing the sponge: single-pass authenticated encryption and other applications, Second SHA-3 can-
didate conference, August 2010.

10. , Kђѐѐюј sponge function family main document, NIST SHA-3 Submission (updated), June 2010,
http://keccak.noekeon.org/.

11. , Note on zero-sum distinguishers of Kђѐѐюј- f , Comment on the NIST Hash Competition Forum,
January 2010, http://keccak.noekeon.org/NoteZeroSum.pdf.

12. , Sponge-based pseudo-random number generators, CHES (S. Mangard and F.-X. Standaert, eds.), Lec-
ture Notes in Computer Science, vol. 6225, Springer, 2010, pp. 33–47.

13. , Duplexing the sponge: single-pass authenticated encryption and other applications, Selected Areas in
Cryptography (SAC), 2011.

14. , On the security of the keyed sponge construction, Symmetric Key Encryption Workshop (SKEW),
February 2011.

15. , The Kђѐѐюј reference, January 2011, http://keccak.noekeon.org/.
16. , The Kђѐѐюј SHA-3 submission, January 2011, http://keccak.noekeon.org/.
17. G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer, Kђѐѐюј implementation overview, May

2012, http://keccak.noekeon.org/.
18. A. Biryukov and D. Wagner, Slide aĴacks, Fast Software Encryption (L. R. Knudsen, ed.), Lecture Notes

in Computer Science, vol. 1636, Springer, 1999, pp. 245–259.
19. C. Bouillaguet and P. Fouque,Analysis of the collision resistance of radiogatún using algebraic techniques, SAC

2008 (RobertoMaria Avanzi, LiamKeliher, and Francesco Sica, eds.), LectureNotes in Computer Science,
vol. 5381, Springer, 2008, pp. 245–261.

20. C. Boura andA. Canteaut,Zero-sum distinguishers on the Keccak-f permutation with 20 rounds (working draft),
private communication, 2010.

21. , A zero-sum property for the Keccak-f permutation with 18 rounds, Available online, 2010, http://
www-roc.inria.fr/secret/Anne.Canteaut/Publications/zero_sum.pdf.

22. C. Boura, A. Canteaut, and C. De Cannière, Higher-order differential properties of Keccak and Luffa, Fast
Software Encryption 2011, 2011.

23. J. Coron, Y. Dodis, C. Malinaud, and P. Puniya, Merkle-Damgård revisited: How to construct a hash func-
tion, Advances in Cryptology – Crypto 2005 (V. Shoup, ed.), LNCS, no. 3621, Springer-Verlag, 2005,
pp. 430–448.

24. J. Daemen, Cipher and hash function design strategies based on linear and differential cryptanalysis, PhD thesis,
K.U.Leuven, 1995.

25. J. Daemen andG. VanAssche,Producing collisions for PANAMA, instantaneously, Fast Software Encryption
2007 (A. Biryukov, ed.), LNCS, Springer-Verlag, 2007, pp. 1–18.

26. J. Daemen and C. S. K. Clapp, Fast hashing and stream encryption with PANAMA, Fast Software Encryption
1998 (S. Vaudenay, ed.), LNCS, no. 1372, Springer-Verlag, 1998, pp. 60–74.

27. J. Daemen and V. Rijmen, The design of Rijndael — AES, the advanced encryption standard, Springer-Verlag,
2002.

28. T. Fuhr and T. Peyrin, Cryptanalysis of radiogatún, FSE 2009 (Orr Dunkelman, ed.), Lecture Notes in Com-
puter Science, vol. 5665, Springer, 2009, pp. 122–138.

29. Michael Gorski, Stefan Lucks, and Thomas Peyrin, Slide aĴacks on a class of hash functions, ASIACRYPT
2008 (Josef Pieprzyk, ed.), Lecture Notes in Computer Science, vol. 5350, Springer, 2008, pp. 143–160.

30

http://131002.net/data/papers/AM09.pdf
http://radiogatun.noekeon.org/
http://www.csrc.nist.gov/pki/HashWorkshop/Public_Comments/2007_May.html
http://keccak.noekeon.org/
http://sponge.noekeon.org/
http://sponge.noekeon.org/
http://keccak.noekeon.org/
http://keccak.noekeon.org/NoteZeroSum.pdf
http://keccak.noekeon.org/
http://keccak.noekeon.org/
http://keccak.noekeon.org/
http://www-roc.inria.fr/secret/Anne.Canteaut/Publications/zero_sum.pdf
http://www-roc.inria.fr/secret/Anne.Canteaut/Publications/zero_sum.pdf

30. A. Joux, Multicollisions in iterated hash functions. Application to cascaded constructions, Advances in Cryp-
tology – Crypto 2004 (M. Franklin, ed.), LNCS, no. 3152, Springer-Verlag, 2004, pp. 306–316.

31. J. Kelsey and B. Schneier, Second preimages on n-bit hash functions for much less than 2n work, Advances in
Cryptology – Eurocrypt 2005 (R. Cramer, ed.), LNCS, no. 3494, Springer-Verlag, 2005, pp. 474–490.

32. D. Khovratovich, Two aĴacks on radiogatún, INDOCRYPT 2008 (Dipanwita Roy Chowdhury, Vincent Ri-
jmen, and Abhijit Das, eds.), Lecture Notes in Computer Science, vol. 5365, Springer, 2008, pp. 53–66.

33. , Cryptanalysis of hash functions with structures, SAC 2009 (Michael J. Jacobson Jr., Vincent Rij-
men, and Reihaneh Safavi-Naini, eds.), Lecture Notes in Computer Science, vol. 5867, Springer, 2009,
pp. 108–125.

34. T. Kohno and J. Kelsey, Herding hash functions and the Nostradamus aĴack, Advances in Cryptology – Eu-
rocrypt 2006 (S. Vaudenay, ed.), LNCS, no. 4004, Springer-Verlag, 2006, pp. 222–232.

35. RSA Laboratories, PKCS # 1 v2.2 RSA Cryptography Standard, 2012.
36. M. Liskov, Constructing secure hash functions from weak compression functions: The case for non-streamable

hash functions.
37. U. Maurer, R. Renner, and C. Holenstein, Indifferentiability, impossibility results on reductions, and applica-

tions to the random oracle methodology, Theory of Cryptography - TCC 2004 (M. Naor, ed.), Lecture Notes
in Computer Science, no. 2951, Springer-Verlag, 2004, pp. 21–39.

38. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of applied cryptography, CRC Press, 1997.
39. NIST, Announcing request for candidate algorithm nominations for a new cryptographic hash algorithm (SHA-

3) family, Federal Register Notices 72 (2007), no. 212, 62212–62220, http://csrc.nist.gov/groups/ST/
hash/index.html.

40. ,NIST selects winner of secure hash algorithm (SHA-3) competition, October 2012, http://www.nist.
gov/itl/csd/sha-100212.cfm.

41. , Third-round report of the SHA-3 cryptographic hash algorithm competition, November 2012, http:
//dx.doi.org/10.6028/NIST.IR.7896.

42. V. Rijmen, B. Van Rompay, B. Preneel, and J. Vandewalle, Producing collisions for PANAMA, Fast Software
Encryption 2001 (M. Matsui, ed.), LNCS, no. 2355, Springer-Verlag, 2002, pp. 37–51.

43. Wikipedia, Cryptographic hash function, 2008, http://en.wikipedia.org/wiki/Cryptographic_hash_
function.

Biographical sketches

Guido Bertoni obtained a Dr. Eng degree in computer engineering and a PhD degree
from Politecnico di Milano in 1999 and 2004 respectively. He joined STMicroelectronics
in fall 2003 as researcher in the field of cryptography in the Advanced System Technology
system research organization. His research interests include cryptographic algorithms,
hardware and software implementations, and problems related to side channels aĴack.
He has taught cryptography at Politecnico diMilano as contract professor. He contributed
to the Bluetooth consortium for the development of the Secure Simple Pairing. He has
authored or co-authored about 40 scientific papers, has served in the program commiĴee
of various conferences and will be program co-chair of the CHES conference in Santa
Barbara in August 2013.

Joan Daemen got his PhD in Cryptography at the Katholieke Universiteit Leuven in
March 1995. He has continued to design and cryptanalyze block ciphers, stream ciphers
and cryptographic hash functions ever since. In 1997, he designed in collaboration with
Vincent Rijmen the block cipher Rijndael that NIST selected to become the Advanced
Encryption Standard (AES) in October 2000. During the twelve years that have passed,
AES has become ubiquitous and it has influenced themajority of symmetric cryptography
primitives designed since. Nowadays, Joanworks in the SecureMicrocontrollers Division
of STMicroelectronics in Diegem, Belgium. There, with Guido Bertoni, Michaël Peeters
and Gilles Van Assche, he formed the Keccak team, that designed of the Keccak sponge
function. NIST selected Keccak to become the SHA-3 standard hash function in October
2012. In parallel with his crypto work, Joan designs and specifies secure microcontroller
based security architectures. His work in cryptography has lead to numerous scientific
publications including a book on Rijndael. Joan has also served as a jurymember of about

31

http://csrc.nist.gov/groups/ST/hash/index.html
http://csrc.nist.gov/groups/ST/hash/index.html
http://www.nist.gov/itl/csd/sha-100212.cfm
http://www.nist.gov/itl/csd/sha-100212.cfm
http://dx.doi.org/10.6028/NIST.IR.7896
http://dx.doi.org/10.6028/NIST.IR.7896
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Cryptographic_hash_function

a dozen PhDs, served in numerous program commiĴees and has givenmany invited talks
at cryptography and security conferences.

Michaël Peeters has a master degree of science in electronics and telecommunication
engineeringwith orientation in computer science.Hehasmore than 10 years of experience
in the security field, focusing on highly demanding sectors like banking, identification,
eGovernment and telematics. He’s the co-author of several papers in cryptography, and
is the co-designer of Keccak, a cryptographic hash function that was recently selected
by NIST as the new SHA-3 standard. He is currently hired as Security Architect for the
telematics project within the NXP Semiconductors’ Business Unit Automotive.

Gilles Van Assche currently works in the Secure Microcontrollers Division of STMi-
croelectronics inDiegem, Belgiumand teaches cryptography at the École Supérieure d’Informatique
in Brussels. He receives the Physics Engineer degree from the Université Libre de Brux-
elles (ULB) in 1998. He then joins the company Proton World, which later became part
of STMicroelectronics. Between 2000 and 2005, in parallel with his job, he works on a
PhD thesis at the Center for Quantum Information and Communication of the ULB. He
is a co-recipient of the prize Le Prix La Recherche mention Mobilités 2004 for his work
in quantum cryptography. He is the author of the book ”Quantum Cryptography and
Secret-Key Distillation” (Cambridge University Press) and of about 30 scientific papers,
and has served in the program commiĴee of various conferences. His current research
interests are hash function design, modes of operation and side channel aĴacks. Together
with Guido Bertoni, Joan Daemen and Michaël Peeters, he is a co-designer of the Keccak
sponge function, which was selected by NIST as the winner of the SHA-3 competition. At
ST, he works on security and testing aspects of software on secure microcontrollers.

The Keccak Team: during the last few years Guido, Joan, Michaël and Gilles have
joined forces, concentrating on permutation-based cryptography with a focus on actual
usability. This has lead among other things to the new sponge and duplex constructions,
with their unique combination of simplicity and flexibility. These constructions allow
hashing, encryption, authentication and authenticated encryption, all based on one single
simple component: an iterated permutation. Based on them, they designed the primitive
Keccak and submiĴed it to theNIST SHA-3 competition. The innerworkings ofKeccak are
equally innovative, making use of a fresh set of round components. Aside from Keccak,
the sponge and duplex constructions are also adopted by several so-called lightweight
functions.

32

	The making of Keccak
	Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche

