
CAESAR submission: Kђѡїђ v2

Designed and submiĴed by:

Guido Bђџѡќћі1
Joan Dюђњђћ1,2

Michaël PђђѡђџѠ1

Gilles Vюћ AѠѠѐѕђ1

Ronny Vюћ Kђђџ1

http://ketje.noekeon.org/
ketje (at) noekeon (dot) org

Version of Kђѡїђ: 2
Version of the document: 2.0
September 15, 2016

1STMicroelectronics
2Radboud University Nĳmegen

http://ketje.noekeon.org/

Contents

1 Definitions 3
1.1 Notation . 3
1.2 Of bits and bytes . 3
1.3 Padding rules . 4
1.4 Key pack . 4

2 The Kђѐѐюј-p permutations 4
2.1 The twisted permutations . 5

3 The MќћјђѦDѢѝљђѥ construction 6
3.1 Specification . 7
3.2 Rationale . 7
3.3 Applications . 9

4 The authenticated encryption mode MќћјђѦWџюѝ 10
4.1 Specification . 11
4.2 Rationale . 11

5 Kђѡїђ 13
5.1 Specification . 13
5.2 Security goals . 13
5.3 Rationale . 14

6 Using Kђѡїђ in the context of CAESAR 15
6.1 Specification and security goals . 15
6.2 Security analysis and design rationale . 15
6.3 Features . 16
6.4 Intellectual property . 17
6.5 Consent . 17
6.6 CAESAR use cases . 17

A Change log 18
A.1 From 1.0 to 1.1 . 18
A.2 From 1.1 to 2.0 . 18

2

Kђѡїђ is a set of four authenticated encryption functions with support for message
associated data. They are aimed at memory-constrained devices and strongly rely on
nonce uniqueness for security. In the architecture of our proposal we adopt a layered
approach, with Kђѡїђ specified as instantiations of a mode built on top of a construction
that calls a permutation as cryptographic primitive.

Kђѡїђ builds on round-reduced versions of Kђѐѐюј- f [4]. The construction calling
these permutations is MќћјђѦDѢѝљђѥ, a variant of the duplex construction [3]. Its most
important new feature is that it supports different types of calls that invoke the permu-
tation with a different number of rounds. The performance of the resulting scheme can
be optimized by reducing the number of rounds quite aggressively, at the cost of requir-
ing nonce uniqueness for its security against key retrieval. This restricts MќћјђѦDѢѝљђѥ
to use cases where nonce uniqueness can be guaranteed. This includes scenarios where
replay aĴacks are a concern.

Themode that runs on top ofMќћјђѦDѢѝљђѥ is calledMќћјђѦWџюѝ, similar and func-
tionally equivalent to SѝќћєђWџюѝ [3]. The main differences with the laĴer are that it is
built on top of MќћјђѦDѢѝљђѥ instead of duplex and that it uses two bits per block for
domain separation instead of a single one.

For the small instances of Kђѡїђ, Kђѡїђ Jџ and Kђѡїђ Sџ, the rate is set to only 8 % of
the permutation width in order to achieve state-of-the-art security strength despite the
relatively small state size of 200 (and 400) bits. This is compensated by performing only
a single round of Kђѐѐюј- f in the majority of calls. In this respect, Kђѡїђ is somewhat
similar to RюёіќGюѡҼћ [1]. The two larger instances, KђѡїђMіћќџ and KђѡїђMюїќџ, have
a higher rate (16 %) to beĴer exploit the available permutation width (800 and 1600 bits).

AĞer introducing some notation, basic definitions and the Kђѐѐюј-p permutations in
Sections 1 and 2, we introduce the MќћјђѦDѢѝљђѥ construction in Section 3, followed by
the specification of the MќћјђѦWџюѝ mode in Section 4. We specify Kђѡїђ in Section 5
and finally explain how Kђѡїђ addresses the CAESAR call for proposals in Section 6.

1 Definitions

1.1 Notation

A bit is an element of Z2. A n-bit string is a sequence of bits represented as an element
of Zn

2 . By convention the first bit in the sequence is wriĴen on the leĞ side, i.e., the first
element in the string (b0, b1, . . . , bn−1) is b0. The set of bit strings of all lengths is denoted
Z∗2 and is defined as

Z∗2 = ∪∞
i=0Zi

2.

Similarly, the set of all binary strings of length 0 up to n is denoted by Z≤n
2 , i.e.,

Z≤n
2 = ∪n

i=0Zi
2.

The length in bits of a string s is denoted |s|. The concatenation of two strings a and
b is denoted a||b. In some cases, where it is clear from the context, the concatenation is
simply denoted ab.

1.2 Of bits and bytes

A byte is a string of 8 bits, i.e., an element of Z8
2. The byte (b0, b1, . . . , b7) can also be repre-

sented by the integer value ∑i 2ibi wriĴen in hexadecimal. E.g., the byte (0, 1, 1, 0, 0, 1, 0, 1)
can be equivalently wriĴen as 0xA6. The function enc8(x) encodes the integer x, with

3

0 ≤ x ≤ 255, as a byte with value x. When the length of a bit string is a multiple of
8, it can also be represented as a sequence of bytes, and vice-versa. E.g., the bit string
(0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1) can also be wriĴen as the sequence (0, 1, 1, 0, 0, 1, 0, 1)
(0, 0, 1, 1, 1, 1, 1, 1) or 0xA6 0xFC.

1.3 Padding rules

We use two different padding rules:

• The simple padding, denoted pad10∗[r](|M|), returns a bit string 10q with q =
(−|M| − 1) mod r. When r is divisible by 8 and M is a sequence of bytes, then
pad10∗[r](|M|) returns the byte string 0x01 0x00(q−7)/8.

• The multi-rate padding, denoted pad10∗1[r](|M|), returns a bitstring 10q1 with q =
(−|M| − 2) mod r [3]. When r is divisible by 8 and M is a sequence of bytes, then
pad10∗1[r](|M|) returns the byte string 0x01 0x00(q−14)/8 0x80.

1.4 Key pack

For a key K, we define a key pack of l bits as

keypack(K, l) = enc8(l/8)||K||pad10∗[l − 8](|K|),

where the key K is at most (l − 9)-bit long and where l is a multiple of 8 not greater than
255× 8. That is, the key pack consists of

• a first byte indicating its whole length in bytes, followed by

• the key itself, followed by

• simple padding.

For instance, the 64-bit key K = 0x01 0x23 0x45 0x67 0x89 0xAB 0xCD 0xEF yields

keypack(K, 144) = 0x12 0x01 0x23 0x45 0x67 0x89 0xAB 0xCD 0xEF 0x01 0x008.

The purpose of the key pack is to have a uniformway of encoding a secret key as prefix
of a string input.

2 The Kђѐѐюј-p permutations

The Kђѐѐюј-p permutations are derived from the Kђѐѐюј- f permutations [4] and have a
tunable number of rounds. A Kђѐѐюј-p permutation is defined by its width b = 25× 2ℓ,
with b ∈ {25, 50, 100, 200, 400, 800, 1600}, and its number of rounds nr. In a nutshell,
Kђѐѐюј-p[b, nr] consists in the application of the last nr rounds of Kђѐѐюј- f [b]. When
nr = 12 + 2ℓ, Kђѐѐюј-p[b, nr] = Kђѐѐюј- f [b].

The permutation Kђѐѐюј-p[b, nr] is described as a sequence of operations on a state
a that is a three-dimensional array of elements of GF(2), namely a[5, 5, w], with w = 2ℓ.
The expression a[x, y, z] with x, y ∈ Z5 and z ∈ Zw, denotes the bit at position (x, y, z).
It follows that indexing starts from zero. The mapping between the bits of s and those of
a is s[w(5y + x) + z] = a[x, y, z]. Expressions in the x and y coordinates should be taken
modulo 5 and expressions in the z coordinate modulo w. We may sometimes omit the [z]

4

index, both the [y, z] indices or all three indices, implying that the statement is valid for
all values of the omiĴed indices.

Kђѐѐюј-p[b, nr] is an iterated permutation, consisting of a sequence of nr rounds R,
indexed with ir from 12+ 2ℓ− nr to 12+ 2ℓ− 1. Note that ir, the round number, does not
necessarily start from 0. A round consists of five steps:

R = ι ◦ χ ◦ π ◦ ρ ◦ θ, with

θ : a[x, y, z] ← a[x, y, z] +
4

∑
y′=0

a[x− 1, y′, z] +
4

∑
y′=0

a[x + 1, y′, z− 1],

ρ : a[x, y, z] ← a[x, y, z− (t + 1)(t + 2)/2],

with t satisfying 0 ≤ t < 24 and
(

0 1
2 3

)t (1
0

)
=

(
x
y

)
in GF(5)2×2,

or t = −1 if x = y = 0,

π : a[x, y] ← a[x′, y′], with
(

x
y

)
=

(
0 1
2 3

)(
x′

y′

)
,

χ : a[x] ← a[x] + (a[x + 1] + 1)a[x + 2],
ι : a ← a + RC[ir].

The additions and multiplications between the terms are in GF(2). With the exception of
the value of the round constants RC[ir], these rounds are identical. The round constants
are given by (with the first index denoting the round number)

RC[ir][0, 0, 2j − 1] = rc[j + 7ir] for all 0 ≤ j ≤ ℓ,

and all other values of RC[ir][x, y, z] are zero. The values rc[t] ∈ GF(2) are defined as the
output of a binary linear feedback shiĞ register (LFSR):

rc[t] =
(

xt mod x8 + x6 + x5 + x4 + 1
)

mod x in GF(2)[x].

Note that the round index ir can be consideredmodulo 255, the period of the LFSR above.

2.1 The twisted permutations

We define the twisted permutations Kђѐѐюј-p⋆ as

Kђѐѐюј-p⋆[b, nr] = π ◦Kђѐѐюј-p[b, nr] ◦ π−1,

where π is the step mapping defined above andwhere π−1 is its inverse, using the matrix(
0 1
2 3

)−1

=

(
1 3
1 0

)
.

The purpose of this twist is to effectively re-order the bits in the state. The mapping
s[w(5y + x) + z] = a[x, y, z] puts the bits first in the plane with y = 0 then in the plane
with y = 1 and so on. The π−1 operation moves the lanes (x, const) to (x, x + const′), i.e.,
the planes become diagonals. For state values s and s′, we have

s′ = Kђѐѐюј-p⋆[b, nr](s) ⇔ π−1(s′) = Kђѐѐюј-p[b, nr](π
−1(s)),

so the twisted permutation is equivalent to applying the original permutation to a state
represented as π−1(s). In that case, the outer and inner parts of the sponge or duplex
construction are moved accordingly.

Note that we could equivalently define Kђѐѐюј-p⋆ by twisting the round function
R⋆ = π ◦ ι ◦ χ ◦ π ◦ ρ ◦ θ ◦ π−1. When iterated, the intermediate π and π−1 cancel out.

5

3 The MќћјђѦDѢѝљђѥ construction

The MќћјђѦDѢѝљђѥ construction is a toolbox aimed at building stream ciphers and au-
thenticated encryption schemes. It uses a permutation f with a tunable number of rounds.
We denote the instance of f with nr rounds f [nr]. The MќћјђѦDѢѝљђѥ construction takes
four parameters that determine its efficiency and security strength.

Similar to the duplex construction [3], the MќћјђѦDѢѝљђѥ is stateful and accepts calls
taking a string as input and returning a string as output. This output string depends on
all inputs received so far. Unlike duplex, MќћјђѦDѢѝљђѥ supports two types of calls that
are different in the number of rounds of f executed between input and output.

We call an instance of the MќћјђѦDѢѝљђѥ construction a MќћјђѦDѢѝљђѥ object and
denote it as D in our descriptions. We prefix the calls made to a specific MќћјђѦDѢѝљђѥ
object D by its name D and a dot.

The MќћјђѦDѢѝљђѥ[f , r, nstart, nstep, nstride] construction works as follows:

• AMќћјђѦDѢѝљђѥ instance D has a state of b bits, where b is the width of the under-
lying permutation. A MќћјђѦDѢѝљђѥ instance can be started with a call D.start(I),
where the string I can be almost full width. This initializes the state by seĴing it
to the input string I, extended to b bits with multi-rate padding. Subsequently, it
applies f [nstart] to it.

• With calls to D.step(σ, ℓ) and D.stride(σ, ℓ) one can inject a bit string σ of up to r− 2
bits. AĞer the bits are injected, either f [nstep] or f [nstride] is applied to the state and
the first ℓ bits of the state are extracted, with ℓ ≤ r. These interfaces are similar but
serve different purposes. Both aim at providing resistance against state retrieval,
but in addition, D.stride() also aims at providing resistance against output forgery.
Hence this requires that nstep < nstride. Typically we also have nstride < nstart.

The MќћјђѦDѢѝљђѥ construction is illustrated in Figure 1.

Figure 1 – The MќћјђѦDѢѝљђѥ construction

We originally proposed the concept of the MќћјђѦDѢѝљђѥ construction in [5]. We
slightly modified the definition since then due to new insights.

6

3.1 Specification

In this section we formally specify MќћјђѦDѢѝљђѥ with pseudo-code in Algorithm 1.

Algorithm 1 The MќћјђѦDѢѝљђѥ[f , r, nstart, nstep, nstride] construction

Require: 2 < r < b, nstep < nstride
Require: s ∈ Zb

2 (maintained across calls)

Interface: D.start(I) with I ∈ Z≤b−2
2

s = I||pad10∗1[b](|I|)
s = f [nstart](s)

Interface: Z = D.step(σ, ℓ) with ℓ ≤ r, σ ∈ Z≤r−2
2 and Z ∈ Zℓ

2
P = σ||pad10∗1[r](|σ|)
s = s⊕ (P||0b−r)
s = f [nstep](s)
return ⌊s⌋ℓ

Interface: Z = D.stride(σ, ℓ) with ℓ ≤ r, σ ∈ Z≤r−2
2 and Z ∈ Zℓ

2
P = σ||pad10∗1[r](|σ|)
s = s⊕ (P||0b−r)
s = f [nstride](s)
return ⌊s⌋ℓ

3.2 Rationale

MќћјђѦDѢѝљђѥ is meant to be used in a keyedmode. During its start-up it shall be loaded
with I containing a secret key and a nonce and during operation an aĴacker shall not have
access to the inner state.

The values of r, nstart, nstep and nstride are meant to be tuned to target some given
security strength s, possibly assuming the data complexity is below some (large) value.
We relate the security strength s to the complexity of state reconstruction, to the highest
differential probability (DP) of differentials over the permutation f [nstart], and the highest
DP of differentials between MќћјђѦDѢѝљђѥ input and output across stride calls. We now
list three informal security claims that express the criteria underlying the choice of r, nstart,
nstep and nstride.

Claim 1 (Solitary state retrieval hardness). For an aĴacker that can adaptively make D.step()
and D.stride() calls to a single MќћјђѦDѢѝљђѥ instance with unknown inner state, there shall be
no algorithm that succeeds in reconstructing its inner state with success probability above N2−s.
Here N is the computational complexity of the aĴack, where a computational effort equal to that of
a single call to f [nstep] is the unit and where the computation of the calls to the MќћјђѦDѢѝљђѥ
instance under aĴack is included.

This claim simply expresses that it shall be hard to retrieve the state for an aĴacker
who is limited to a single instance. By single-instance we understand that the aĴacker
does not have access to multiple MќћјђѦDѢѝљђѥ instances started with the same input I.
The single-instance limitation practically excludes the use of differential cryptanalysis for
solitary state retrieval.

7

The requirement of solitary state retrieval hardness affects the choice of r and nstep.
Two classical approaches to reconstruct the inner state are:

• State guessing: we take a MќћјђѦDѢѝљђѥ object, assume a value for the inner state,
apply the known input sequence and check whether the simulated output sequence
corresponds with that of the instance under aĴack. We repeat this procedure un-
til we have success. The success probability depends on a feature of the available
input-output sequence called the multiplicity m [2] that is limited by the data com-
plexity of the aĴack. The success probability is slightly above mN2r−b = mN2−c.
This implies we have to take s < c− log2 m. Note that this is a generic method.

• Equation solving: we express the round function as a set of round equations. We
use these to form a set of equations in the inner state with known inputs and out-
puts covering a number of MќћјђѦDѢѝљђѥ calls. The known outputs and inputs
should be large enough to give a unique solution for the inner state. Then we try to
solve this set of equations. The success probability of this aĴack as a function of its
computational complexity is hard to estimate and strongly depends on the method
used and the nature of the round function of the cipher. However, it is clear that the
number of equations and unknowns is proportional to the total number of rounds
covered and the capacity c. This is a non-generic method.

In general, for a given round function f with width b, the designer has some freedom
in the selection of the parameters r and nstep. Increasing the rate r reduces the resistance
with respect to both aĴacks. In state guessing, it decreases the number b− r of unknown
state bits to be guessed. In equation solving, for equal nstep value, it reduces the total
number of round equations and unknowns. Similarly, decreasing nstep also reduces the
total number of equations and unknowns. In this context we can derive from nstep, the
width b and the rate r a quantity that characterizes the difficulty of equation solving: the
unicity number.

Definition 1. In a mode calling an iterative primitive f , the unicity number nunicity is the number
of rounds of f that separate the first and last bits of a sequence of output bits long enough to fully
determine its internal state.

The unicity number of MќћјђѦDѢѝљђѥ is given by:

nunicity =

⌈
b− r

r

⌉
nstep .

This formula can be explained as follows. The size of the state is b bits sowe need b output
bits. AĞer seeing r bits of output from a call to D.step() or D.stride(), we need b− r more
bits of output. This takes

⌈
b−r

r

⌉
additional calls to D.step(), each one taking nstep rounds

(note that nstep < nstride) .
The security grows and efficiency decreaseswith increasing nunicity. Informally, nunicity

is the number of rounds covered by any system of equations that can be used to recover
the state. The idea is for a given round function to estimate a safe value of nunicity, and use
that to determine nstep and the rate r. We give an evaluation of nunicity for our submission
in Section 5.3.

Our second claim concerns resistance against output forgery. A typical call sequence
in that case is D.start(I), D.step(), . . . , D.step(), followed by D.stride(), D.step(), . . . We
will bound the resistance against an aĴacker trying to manipulate the output aĞer the call
to D.stride(). In our description, we index this call with 0, previous calls with negative

8

numbers and further calls with positive numbers. We implicitly exclude the case where
the aĴacker could extract the state before this call, since otherwise she would succeed
with probability 1.

Claim 2 (Solitary output forgery hardness). Consider an aĴacker that is given the inputs σi
and outputs Zi with −m < i < n of any sequence of calls D.step() and D.stride() of a single
MќћјђѦDѢѝљђѥ instance with unknown inner state and let the call with index i = 0 be a call
to D.stride(). For such an aĴacker the success probability per aĴempt of any algorithm that
succeeds in constructing another input sequence σ′i and a corresponding partial output sequence
Z′j for 0 ≤ j < n that would be consistent with the given instance shall be below max(2−rn, 2−s).

This claim expresses thatmodifying the input to a single instance impacts its output in
a way that makes it hard to predict. In fact, the success probability of correctly predicting
from a difference applied at the input what is the difference at the output aĞer a call to
D.stride() should not be beĴer than pure chance, and this up to a length that matches the
security strength s. Output forgery hardness affects the choice of r and nstride. It induces
a cost whenever protection against output forgery is a requirement. This is the case for
tags in authenticated encryption.

An approach to make a forgery would be to find a differential of type (σ′−m, . . . , σ′0)
to (Z′0, . . . , Z′n−1) with DP above max(2−rn, 2−s). Subsequently, the aĴacker just modifies
the observed input sequence by the adding σ′i and assumes that the forged output is the
observed output sequence with Z′j added to it.

Claim 3 (Strong instance separation). An aĴacker that can start multiple MќћјђѦDѢѝљђѥ
instances, with the only restriction that no two objects may have the same value I in D.start(I),
but possibly the same key, must not have an advantage in performing state retrieval or output
forgery over the cases of solitary state retrieval or solitary output forgery.

Strong instance separation affects the choice of nstart. Applying f [nstart] to I shall de-
stroy all structures an aĴacker can apply in choosing I that would allow her to aĴack
multiple instances beĴer than single ones. The value of nstart basically determines the
fixed set-up cost for starting a newMќћјђѦDѢѝљђѥ object and as such strongly affects key
agility.

Note that no security claims are made against an aĴacker that can start multiple Mќћ-
јђѦDѢѝљђѥ instances with the same input I. As a maĴer of fact, this may allow an aĴacker
to retrieve the inner state, fully breaking it. Hence it is essential that I is unique for each
use of MќћјђѦDѢѝљђѥ. Or, stated otherwise, the uniqueness of I is as important as its
secrecy.

In short, an aĴacker that can start multiple MќћјђѦDѢѝљђѥ instances with the same
input I can inject differences in the input to calls to D.step(−, r) and observe differences
in its response. There are only nstep rounds between input and output and this typically is
a very small number. The combination of input and output differences impose restrictions
on bits of the inner part of the state in the form of simple equations and an aĴacker may
collect enough of such equations to reconstruct the full state.

3.3 Applications

The MќћјђѦDѢѝљђѥ construction can be used in several use cases, typically implemented
as amode on top of theMќћјђѦDѢѝљђѥ construction. Herewe give an informal discussion
on the three most important use cases we have in mind.

The first and simplest use case is that of a synchronous stream cipher. The key and
nonce are concatenated to form I and a new instance can be started by D.start(I). From

9

then on, key stream can be generated ad libitum by making D.step(−, r) calls. Output
forgery does not apply and hence no D.stride(−, r) is needed.

The second use case is that of a reseedable pseudorandom bit sequence generator [2].
Initial seed material is concatenated with a nonce to form I and a new instance can be
started by D.start(I). From then on pseudorandom bits can be generated ad libitum by
making D.step(σ, r) calls, where σ may contain fresh seed material. Also here, typical
use cases do not require protection against output forgery and hence no D.stride(−, r) is
needed.

The third use case, and the most relevant one in this document, is that of authenti-
cated encryption. The key and nonce are concatenated to form I and a new instance can
be started by D.start(I). From then on, messages with associated data can be wrapped
or cryptograms with associated data and tags can be unwrapped. Encryption is done by
bitwise addition with the output of D.step() calls. The inner state depends on all the mes-
sages and associated data presented to the MќћјђѦDѢѝљђѥ instance since it was started
and so will any output of a call to D.step() or D.stride(). The (first part of the) tag is the
output of a D.stride() call, providing protection against tag forgery. Actually, this tag
forgery concern is the reason we introduced the D.stride() call in MќћјђѦDѢѝљђѥ, com-
pared to the our draĞ proposal of MќћјђѦDѢѝљђѥ in [5].

4 The authenticated encryption mode MќћјђѦWџюѝ

We consider authenticated encryption as a process that takes as input a header A and a
data body B and that returns a cryptogram C and a tag T. We denote this operation by
the term wrapping and the reverse operation of taking a header A, a cryptogram C and a
tag T and returning the data body B if the tag T is correct by the term unwrapping.

We further consider the process of authenticating and encrypting a sequence of
header-body pairs (A, B) = (A(1), B(1), A(2), . . . , A(n), B(n)) in such a way that the authen-
ticity is guaranteed not only on each (A, B) pair but also on the sequence received so far.
This is further formalized in [3, Section 2.1].

The authenticated encryption process is initialized by loading a key K and a nonce N.
We propose an authenticated encryption mode MќћјђѦWџюѝ that is very similar to

SѝќћєђWџюѝ [3]. The differences with SѝќћєђWџюѝ are the following:

1. MќћјђѦWџюѝ is built on MќћјђѦDѢѝљђѥ rather than on duplex.

2. MќћјђѦWџюѝ has a simpler way to load the key and a nonce in the initialization.
It relies on uniqueness of the combination key and nonce for resistance against key
retrieval.

3. MќћјђѦWџюѝ makes different calls to MќћјђѦDѢѝљђѥ when transitioning to tag
generation than in other cases.

Similar to SѝќћєђWџюѝ, MќћјђѦWџюѝ supports sessions, allowing the processing of
several messages (each with associated data), where the tag for each message authen-
ticates the full sequence of messages rather than only the message to which it was ap-
pended. The requirement of nonce uniqueness plays at the level of the session. Within
a session, different messages have no explicit message number or nonce. However, they
must be processed in order for the tags to verify. An alternative way to see this concept
of session is that the mode supports intermediate tags.

10

The maximum key length of MќћјђѦWџюѝ is only limited by the width of the under-
lying permutation and the coding of the key pack. Note that using a key of length |K|
does not necessarily imply that the security strength of the instance is |K|.

4.1 Specification

MќћјђѦWџюѝ is defined in Algorithm 2 and illustrated in Figure 2. For simplifying no-
tation, we restrict the length of the key K to multiples of 8. In the algorithms we denote
by Ai the block consisting of bits ρi to ρ(i + 1)− 1 of A. The quantity ρ can be seen as the
block length of the mode. The blocks of length up to ρ bits map to blocks of r = ρ + 4
inside MќћјђѦDѢѝљђѥ by the addition of two domain separation bits and subsequent ap-
plication of multi-rate padding.

The number of blocks in A is denoted by ∥A∥. All blocks of A have ρ bits except the
last one, A∥A∥−1. This one may have less bits but must be non-empty if A is not the empty
string. If A is the empty string, it has a single block A0 that is also the empty string. The
same holds for B, C and T.

1

st
ar
t

st
ep

st
ep

st
ep

st
ep

st
ri
d
e

st
ep

+00 +00 +01 +11 +10 0

Figure 2 –Wrapping a header and a body with MќћјђѦWџюѝ

4.2 Rationale

AĞer initialization, MќћјђѦWџюѝ appends two frame bits to each input block providing
domain separation resulting in protection against generic aĴacks. Its generic security is
similar to the one of SѝќћєђWџюѝ [3].

11

Algorithm 2 The MќћјђѦWџюѝ(f , ρ, nstart, nstep, nstride) construction.

Require: 0 < ρ ≤ b− 4
Require: D = MќћјђѦDѢѝљђѥ[f , ρ + 4, nstart, nstep, nstride]

Interface: W.initialize(K, N) with K ∈ Z≤b−18
2 , |K| mod 8 = 0 and N ∈ Z

≤b−|K|−18
2 ,

D.start(keypack(K, |K|+ 16)||N)

Interface: (C, T) = W.wrap(A, B, ℓ) with A, B, C ∈ Z∗2 , ℓ ≥ 0, and T ∈ Zℓ
2

for i = 0 to ∥A∥ − 2 do
D.step(Ai||00, 0)

Z = D.step(A∥A∥−1||01, |B0|)
C0 = B0 ⊕ Z
for i = 0 to ∥B∥ − 2 do

Z = D.step(Bi||11, |Bi+1|)
Ci+1 = Bi+1 ⊕ Z

T = D.stride(B∥B∥−1||10, ρ)
while |T| < ℓ do

T = T||D.step(0, ρ)
T = ⌊T⌋ℓ
return (C, T)

Interface: B = W.unwrap(A, C, T) with A, B, C, T ∈ Z∗2
for i = 0 to ∥A∥ − 2 do

D.step(Ai||00, 0)
Z = D.step(A∥A∥−1||01, |B0|)
B0 = C0 ⊕ Z
for i = 0 to ∥C∥ − 2 do

Z = D.step(Bi||11, |Ci+1|)
Bi+1 = Ci+1 ⊕ Z

T′ = D.stride(B∥C∥−1||10, ρ)
while |T′| < |T| do

T′ = T′||D.step(0, ρ)
T′ = ⌊T⌋|T|
if T = T′ then
return B

else
return error

12

5 Kђѡїђ

In this section we specify Kђѡїђ, our submission to CAESAR and give a rationale for the
choice of parameters.

5.1 Specification

We propose four concrete instances of MќћјђѦWџюѝ calling Kђѐѐюј-p⋆ defined in Sec-
tion 2.1. For all four instances, we have nstart = 12, nstep = 1 and nstride = 6. In order of
increasing state sizes, the instances are:

Name f ρ Main use case
Kђѡїђ Jџ Kђѐѐюј-p⋆[200] 16 lightweight
Kђѡїђ Sџ Kђѐѐюј-p⋆[400] 32 lightweight
Kђѡїђ Mіћќџ Kђѐѐюј-p⋆[800] 128 lightweight
Kђѡїђ Mюїќџ Kђѐѐюј-p⋆[1600] 256 high performance

Kђѡїђ Sџ is our primary recommendation. Kђѡїђ Sџ supports keys K of variable length
up to 382 bits and a nonce of length up to 382− |K|. For the targeted security strength
we recommend a key length of 128 bits. Higher key lengths can be adopted as a possible
countermeasure against multi-target aĴacks.

Kђѡїђ Jџ supports keys K of length up to 182 bits and a nonce of length up to 182− |K|.
For the targeted security strength we recommend a key length of 96 bits. Higher key
lengths can be adopted as a possible countermeasure against multi-target aĴacks.

The two last instances, Kђѡїђ Mіћќџ and Kђѡїђ Mюїќџ, exploit the twisted permuta-
tion Kђѐѐюј-p⋆ to absorb more lanes per round than the instances above. Both instances
support keys K of length up to b− 18 bits and a nonce of length up to b− |K| − 18. For
the targeted security strength we recommend a key length of 128 bits. Like for other
instances, higher key lengths can be adopted as a possible countermeasure against multi-
target aĴacks.

For all proposals we remind the requirement of uniqueness of the combination of key
and nonce. In case of maximum-length keys the nonce has length 0 and the key alone
shall be unique.

In general, a Kђѡїђ object supports multiple calls to wrap or unwrap per initialization
and the length of the tag can simply be adapted to the required tag forgery level of the
target application.

5.2 Security goals

Table 1 specifies the security goals for Kђѡїђ. The security strength is indicated with the
logarithm base 2 of the aĴack cost, where the unit is a single Kђѐѐюј-p round. For Kђѡїђ
Jџ we assume the total data complexity is below 287 bytes.

Users are required to use the public message number N as a nonce, i.e., the cipher
may lose all integrity and confidentiality if the legitimate key holder uses the same public
message number N to encrypt two different (plaintext, associated data) pairs under the
same key K. The uniqueness of the nonce N is as critical for security as the secrecy of K.

In multi-target aĴacks against Kђѡїђ the resistance against exhaustive keys may erode
from |K| to |K| − log2 n with n the number of targets. This is the case if n Kђѡїђ instances
are loaded with different keys but the same nonce |N|, and an aĴacker has access to their
outputwhen processing the same input. Note that if an upper limit to n is known, one can
have a security strength of 128 (or 96) bits by taking sufficiently long keys: |K| ≥ 128 +

13

Kђѡїђ Jџ other instances
plaintext confidentiality min(96, |K|) min(128, |K|)
plaintext integrity min(96, |K|, |T|) min(128, |K|, |T|)
associated data integrity min(96, |K|, |T|) min(128, |K|, |T|)
public message number integrity min(96, |K|, |T|) min(128, |K|, |T|)

Table 1 – Security claims for Kђѡїђ. For Kђѡїђ Jџ we assume a maximum data complexity
below 287 bytes. The key length |K| assumes the keys follow a uniform distribution. If not,
|K| shall be interpreted as the min-entropy of the key.

log2 nmax (or |K| ≥ 96 + log2 nmax). An option that avoids erosion without increasing
the length of keys is to impose universal nonce uniqueness. By this we mean that not
only the combination (K, N) must be unique, but the nonce N for each Kђѡїђ instance
must be unique. Many use cases actually allow this. For example, one can take as nonce
the combination of the universally unique IDs of the two communicating devices and a
strictly incrementing session counter.

5.3 Rationale

First of all, we chose Kђѐѐюј-p as the underlying permutations as we consider this a test
case for Kђѐѐюј.

The basic philosophy behind the four Kђѡїђ proposals is to maximize the capacity by
taking a small rate and compensate the loss of performance by reducing the number of
Kђѐѐюј-p rounds in the step calls to a single one, i.e., nstep = 1. This has the advantage
that the success probability of solitary state retrieval by state guessing is minimized. The
expected workload of this generic aĴack is lower bounded by 2c−1/M with M the total
amount of data treated by the keyed Kђѡїђ instance(s) under aĴack [2].

We chose the concrete value of the rate by assuming a reasonable value for nunicity. For
the small state instances (b ≤ 400), basing ourselves on third-party analysis of Kђѐѐюј
and our own, we estimate that nunicity = 12 gives a comfortable safety margin against
solitary state retrieval with equation solving. This leads to r < b/12, matching nicely
with the size of two lanes. So we took ρ = 32 in Kђѡїђ Sџ and ρ = 16 in Kђѡїђ Jџ. For the
larger instances, we use the fact that the size of the equation system and the number of
unknowns grow with the permutation width. We think that for these widths, nunicity = 6
(r < b/6) is sufficient to provide a security strength of 128 bits. As a result we selected
ρ = 128 in Kђѡїђ Mіћќџ and ρ = 256 in Kђѡїђ Mюїќџ.

We chose the number of rounds in a stride call, nstride, equal to 6. In this decision we
took into account the small rate. For an adversary that does not know the value of the
inner state we think it will be infeasible to come up with an input difference paĴern that
will lead to an output difference aĞer 6 Kђѐѐюј-p rounds with a differential probability
(DP) that will break the solitary output forgery hardness.

We chose the number of rounds in a start call, nstart, equal to 12. Based on third-party
cryptanalysis of Kђѐѐюј and our own, we believe this provides a comfortable safety mar-
gin against aĴacks applying differences or other structures at its input to have exploitable
relations at its output.

InKђѡїђ v2, we chose to switch to the twisted permutationsKђѐѐюј-p⋆ so as to limit the
interaction of the outer part with the preceding χ andwith the following θ. Cryptanalysis
usually starts by reducing the number of rounds to see at which point a given primitive

14

becomes insecure. In the case of Kђѡїђ, one cannot decrease the step calls further than
nstep = 1 round. Instead, a cryptanalyst can increase the rate ρ to more than two lanes to
determine at which point Kђѡїђ breaks. However, the lanes of the outer part are located
in the same plane (i.e., same y coordinate) and contain the result of χ. The knowledge of
too many lanes in the same plane could mean that χ is easily inverted on that part of the
state. Also, we should not place the outer part on a sheet (i.e., same x coordinate) as this
would help the adversary influence the parity computed in θ. Instead, the twist places
the outer part on a diagonal (with ρ up to five lanes). We illustrate the usage of Kђѐѐюј-p⋆
in the new instances Kђѡїђ Mіћќџ and Kђѡїђ Mюїќџ.

Finally, we chose the security strength of Kђѡїђ Sџ to be 128 bits as this is a widespread
standard and future-proof. In Kђѡїђ Jџ the width of the permutation is only 200 bits and
aiming for a security strength of 128 bits would impose too much limitations on the on-
line data complexity and limit the length of the nonce too much to our taste. So we re-
duced the security strength to 96 bits. Despite the fact that this is significantly below
128 bits, we believe aĴacks with computational complexity equivalent to 296 calls to the
Kђѐѐюј-p[200, nr] round function will remain overly expensive to deploy in practice for
several decades to come.

6 Using Kђѡїђ in the context of CAESAR

In this section we explain how to use Kђѡїђ in the context of the CAESAR competition.

6.1 Specification and security goals

In the context of CAESAR, performing an authenticated encryption with Kђѡїђ on a mes-
sage M, associated data AD using a public message number N and a key K is done as fol-
lows. Create a Kђѡїђ object W and initialize it with the key and public message number.
Subsequently wrap the associated data andmessage, asking for a tag with length equal to
the target security strength s. This is W.initialize(K, N) followed by W.wrap(AD, M, s).
The secret message number has length 0.

The security goals of Kђѡїђ are specified in Section 5.2.

6.2 Security analysis and design rationale

For the security analysis and design rationale of Kђѡїђ and its building blocks we refer to
the sections that explain the rationale behind them: Section 5.3 for Kђѡїђ, Section 4.2 for
MќћјђѦWџюѝ, and Section 3.2 for MќћјђѦDѢѝљђѥ.

As a generic property of sponge-based schemes, note that in a block cipher based
scheme, the block length n puts a limit of about 2n/2 before collisions occur in the input
blocks. In contrast, in sponge-based schemes, the capacity c takes the place of the block
length in this limit. In Kђѡїђ, the capacity ranges from c = 180 for Kђѡїђ Jџ up to c = 1340
for Kђѡїђ Mюїќџ.

Kђѡїђ has the following security assurance features:

• Generic security of the mode MќћјђѦWџюѝ.

• Security assurance from cryptanalysis of Kђѐѐюј. Note that thanks to theMatryosh-
ka property, most analysis performed on versions of Kђѐѐюј- f transfers to those
with smaller widths.

15

The designers have not hidden anyweaknesses in this cipher or any of its components.
We believe this to be impossible:

• Kђѐѐюј- f and its round-reduced versions: all design choices are documented and
explained in [4]

• MќћјђѦDѢѝљђѥ: a rationale is given in Section 3.2.

• MќћјђѦWџюѝ: a rationale is given in Section 4.2.

• Kђѡїђ: a rationale is given in Section 5.3.

6.3 Features

We would like to highlight the following features of Kђѡїђ, for which our proposal com-
pares favorably to AES-GCM.

• All Kђѡїђ instances but Kђѡїђ Mюїќџ are lightweight in the sense that they have a
small code and working memory footprint and require a relatively small amount
of computation, as illustrated in Table 2. Kђѡїђ Mюїќџ requires similar amount of
operations per bit than KђѡїђMіћќџ and is beĴer adapted to exploiting 64-bit CPUs.
Note that thanks to the higer rate both Kђѡїђ Mіћќџ and Kђѡїђ Mюїќџ can output a
128-bit tag without additional cost.

• The implementation of the round function can be re-used for other symmetric cryp-
tographic primitives, such as hashing, which further reduces the footprint com-
pared to a solution with distinct primitives.

• Kђѡїђ lends itself well to protections against side channel aĴacks, both in hardware
and soĞware. This is of particular importance in the context of constrained devices
and smart cards.

• As a functional feature not present in most authenticated ciphers, Kђѡїђ supports
sessions. In a session, sequences of messages can be authenticated rather than a
single message. The session is initialized by loading the key and nonce and the
tag for each message authenticates the complete sequence of messages preceding it.
During the session, the communicating entities have to keep state.

A typical application of Kђѡїђ would be the so-called secure messaging with secure
chips such as smart cards [6]. The session feature offers an easy and agile way to send
sequences of commands as scripts, interactively or by batch, while preventing an aĴacker
to insert, remove or swap commands in the script.

feature Kђѡїђ Jџ Kђѡїђ Sџ
Kђѡїђ
Mіћќџ

Kђѡїђ
Mюїќџ

state size 25 bytes 50 bytes 100 bytes 200 bytes
block size 2 bytes 4 bytes 16 bytes 32 bytes

processing unit computational cost
initialize per session 12 rounds 12 rounds 12 rounds 12 rounds
wrap per block 1 round 1 round 1 round 1 round
generate 8-byte tag per message 9 rounds 7 rounds 6 rounds 6 rounds

Table 2 – Kђѡїђ implementation features

16

6.4 Intellectual property

We did not submit any patents on Kђѡїђ and do not intend to do so. If any of this infor-
mation changes, the submiĴers will promptly (and within at most one month) announce
these changes on the crypto-competitions mailing list.

6.5 Consent

The submiĴers hereby consent to all decisions of the CAESAR selection commiĴee re-
garding the selection or non-selection of this submission as a second-round candidate,
a third-round candidate, a finalist, a member of the final portfolio, or any other desig-
nation provided by the commiĴee. The submiĴers understand that the commiĴee will
not comment on the algorithms, except that for each selected algorithm the commiĴee
will simply cite the previously published analyses that led to the selection of the algo-
rithm. The submiĴers understand that the selection of some algorithms is not a negative
comment regarding other algorithms, and that an excellent algorithm might fail to be
selected simply because not enough analysis was available at the time of the commiĴee
decision. The submiĴers acknowledge that the commiĴee decisions reflect the collective
expert judgments of the commiĴee members and are not subject to appeal. The submit-
ters understand that if they disagree with published analyses then they are expected to
promptly and publicly respond to those analyses, not to wait for subsequent commiĴee
decisions. The submiĴers understand that this statement is required as a condition of
consideration of this submission by the CAESAR selection commiĴee.

6.6 CAESAR use cases

The targeted use case for Kђѡїђ Sџ, Kђѡїђ Jџ and Kђѡїђ Mіћќџ is Use Case 1: lightweight
applications (resource constrained environments), as they

• fit into small hardware area and small code for 8-bit CPUs (and 32-bit CPUs for
Kђѡїђ Mіћќџ);

• have a natural ability to protect against side-channel aĴacks;

• offer competitive hardware performance, including energy/bit;

• are fast on 8-bit CPUs (and 32-bit CPUs);

• have a small block size, minimizing the fixed costs for all message sizes.

The targeted use case for Kђѡїђ Mюїќџ is Use Case 2: high-performance applications,
as it is

• efficient on 64-bit CPUs and is very efficient on dedicated hardware;

• efficient on 32-bit CPUs;

• constant-time when message length is constant.

17

References

[1] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, RюёіќGюѡҼћ, a belt-and-mill
hash function, Second Cryptographic Hash Workshop, Santa Barbara, August 2006,
http://radiogatun.noekeon.org/.

[2] , Sponge-based pseudo-random number generators, CHES (S. Mangard and F.-X.
Standaert, eds.), Lecture Notes in Computer Science, vol. 6225, Springer, 2010, pp. 33–
47.

[3] , Duplexing the sponge: single-pass authenticated encryption and other applications,
Selected Areas in Cryptography (SAC), 2011.

[4] , The Kђѐѐюј reference, January 2011, http://keccak.noekeon.org/.

[5] , Permutation-based encryption, authentication and authenticated encryption, Direc-
tions in Authenticated Ciphers, July 2012.

[6] ISO/IEC, Identification cards – integrated circuit cards – part 4: Organization, security and
commands for interchange, 2005.

Acknowledgments

We acknowledge the anonymous CAESAR commiĴee members for their second round
comments.

A Change log

A.1 From 1.0 to 1.1

Only Section 6.3 (“Features”) changed to include a brief comparison with AES-GCM.

A.2 From 1.1 to 2.0

The changes are:
• We tweaked Kђѡїђ v1 to Kђѡїђ v2 by replacing the Kђѐѐюј-p permutation by its

twisted version Kђѐѐюј-p⋆. In practice, this only changes how the input/output bits
are ordered in the state. E.g., the outer part is on lanes (0, 0) and (1, 1), instead of
lanes (0, 0) and (1, 0) for Kђѡїђ v1.

– We added Section 2.1 to introduce Kђѐѐюј-p⋆ and we gave a rationale for the
tweak in Section 5.3.

• To illustrate the use of the new permutation and as a way to motivate cryptanalysis
research on Kђѡїђ, we added two new larger instances that absorb more lanes per
round than their liĴle brothers.

– Kђѡїђ Mіћќџ has 800-bit state and absorbs 4 lanes per round. It targets light-
weight applications on 32-bit CPUs.

– Kђѡїђ Mюїќџ has 1600-bit state and absorbs 4 lanes per round. It targets high-
performance applications on 64-bit CPUs.

• We added Section 6.6 as required for the CAESAR competition.

18

http://radiogatun.noekeon.org/
http://keccak.noekeon.org/

	Definitions
	Notation
	Of bits and bytes
	Padding rules
	Key pack

	The Keccak-p permutations
	The twisted permutations

	The MonkeyDuplex construction
	Specification
	Rationale
	Applications

	The authenticated encryption mode MonkeyWrap
	Specification
	Rationale

	Ketje
	Specification
	Security goals
	Rationale

	Using Ketje in the context of CAESAR
	Specification and security goals
	Security analysis and design rationale
	Features
	Intellectual property
	Consent
	CAESAR use cases

	Change log
	From 1.0 to 1.1
	From 1.1 to 2.0

