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Abstract. Originally submiĴed as a hash function to the SHA-3 contest, Kђѐѐюј has shown
quite some flexibility and was used to build several variants. We propose the Kђѐѐюј code
package for reusing the common parts of these algorithms and for narrowing the scope of the
optimizations. In this presentation, we discuss some aspects of the soĞware implementation
of Kђѐѐюј-based algorithms, including techniques to optimize the Kђѐѐюј-p family of permu-
tations and the structure of the Kђѐѐюј code package.

Originally submiĴed as a hash function to the SHA-3 contest, Kђѐѐюј has shown quite
some flexibility, e.g., as extendable output-function, pseudo-random bit generator or au-
thenticated encryption scheme, and was used to build several variants such as Kђѡїђ,
KђѦюј or KюћєюџќќTѤђљѣђ [3,7,8,9,14]. All these algorithms share the use of the sponge
construction or a construction close to it (i.e., duplex, monkey duplex, full-state keyed
duplex) and of the Kђѐѐюј-p round function [1,2,4,12,13].

A soĞware implementation can naturally benefit from reusing the common parts of these
algorithms. However, one has to deal with diversity too. For instance, Kђѐѐюј itself re-
lies on permutations of different sizes, from Kђѐѐюј- f [200] to Kђѐѐюј- f [1600] for what
concerns soĞware implementation. Some variants use a different number of rounds, e.g.,
KђѦюј and KюћєюџќќTѤђљѣђ use Kђѐѐюј-p[1600, nr = 12] instead of Kђѐѐюј- f [1600] =
Kђѐѐюј-p[1600, nr = 24]. Others rely on the parallel evaluation of these permutations and
expect fast implementations using SIMD instructions. Combined with the different con-
structions andmodes, and the different platforms one wishes to optimize for, the number
of implementations can grow quickly.

As a solution, we propose the Kђѐѐюј code package [10]. It is structured in two levels. The
high-level cryptographic services implement the modes and constructions in plain C,
without any specific optimizations, while the low-level services implement the permuta-
tions and the state input/output functions, which can be optimized for a given platform.
The idea is to have a single, portable, code base for the high level and the possibility to
dedicate the low level to certain platforms for best performance.

In this presentation, we will detail some aspects of the soĞware implementation of Kђѐ-
ѐюј-based algorithms, namely:

– techniques to optimize the Kђѐѐюј-p family of permutations, from memory savings
on small devices to specifics of the AVX-512™ instruction set;

– the structure of the Kђѐѐюј code package, with KюћєюџќќTѤђљѣђ as a case study.

1 Implementation techniques

We summarize here some implementation techniques that are relevant in soĞware [6].



1.1 Minimizing the time

How to cut a lane: bit interleaving The state of Kђѐѐюј- f [1600] can be expressed as 25
lanes of 64 bits each. In soĞware, this calls for an implementation using 64-bit words.
While this is an optimal choice on soĞware platforms actually offering 64-bit operations,
the bit interleaving technique allows efficient implementations on systems with smaller
word sizes and can also be used to target compact hardware circuits.

In its simplest form, namely factor-2 interleaving, it splits each lane in twowords: one con-
taining the bits with even indices and one with odd indices. The state of Kђѐѐюј- f [1600]
is then represented as 50 words of 32 bits. The rotations in θ and ρ are performed as cyclic
shiĞs on 32-bit words, making them efficient on a 32-bit processor. There is a cost associ-
ated to the conversion of the input message into this representation, but this cost remains
small compared to the evaluation of the permutation itself.

In general an interleaving factor of s maps each lane to s words of 64
s bits. For instance,

factor-8 interleaving expresses the round function of Kђѐѐюј- f [1600] in terms of opera-
tions on bytes. Further details and examples can be found in [6, Section 2.1].

Processing planes Aplane is a set of 5 lanes that can be combined in χ. So doing plane-per-
plane processing nicely fits in χ. The dispersion step π just before χ can be implemented
implicitly by fetching the lanes from appropriate locations, and the rotations ρ can be
done individually on each lane together with π. The step θ can be done on the fly (see
Section 1.1). Detailed scheduling of the operations can be found in [6, Section 2.4].

Bit interleaving can also be used to process fractions of planes. For an interleaving factor
of s, 5words of 64/s bits are processed together. Currently, the fastest soĞware implemen-
tations are organized to process each plane at a time. This includes both implementations
optimized for 64-bit platforms (s = 1, no interleaving) and those for 32-bit ones (s = 2).

Lane complementing The mapping χ of Kђѐѐюј- f [1600] consists in 5 XOR, 5 AND and 5
NOT operations. Some platforms support instructions that combine a AND and a NOT,
but not all do. In the laĴer case, the lane complementing technique aims at removing 4 out
of 5 NOT operations by representing some of the lanes by their complement. This makes
simple use of the De Morgan laws, replacing a fraction of the logical ANDs by ORs. We
explain how this can be done in [6, Section 2.2].

Extending the state to compute θ on the fly The θ operation consists in XORing a paĴern
in the entire state that depends only on the parity of the columns before θ. The paĴern
to XOR is called the θ-effect and is constant over each column. If the implementation can
afford a bit of extra memory, one can use 5 lanes:

– to accumulate the parity of the columns as the output of χ in the previous round is
being computed, and/or

– to store the θ-effect to be able to XOR it as the current round is being processed.

Further details and examples can be found in [6, Section 2.3] and in [6, Section 2.4.1].

1.2 Minimizing the memory usage

In terms of memory usage, the sponge and duplex constructions have no feedforward
loop and can do in-place absorbing, without the need for additional memory dedicated
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specifically to that purpose. Hence, the memory footprint of Kђѐѐюј is determined solely
by that of the underlying permutation. We here describe a technique to minimize the
memory needed by Kђѐѐюј- f [1600] without sacrificing speed.

Efficient in-place processing A typical speed-optimized soĞware implementation reserves
twomemory areas, each with the size of the state (200 bytes). The computation of a round
takes the state in one area and stores the result in the other, alternatively. In [6, Section 2.5],
we propose away to store processed data back into the samememory location itwas taken
from. Hence a single instance of the state must be reserved, plus some extra memory to
store the parity and/or the θ-effect (see Section 1.1). As π moves lanes to different coordi-
nates, this requires to define amapping between the lane coordinates (x, y) and the mem-
ory location that depends on the round number. The mapping has a cycle of 4 rounds, so
aĞer the 12 or 24 nominal rounds the memory area returns to its original configuration.

This technique can be combined with bit interleaving. In that case, the mapping between
the lane coordinates and memory location must be adapted. E.g., with factor-2 interleav-
ing the mapping still has a cycle of 4 rounds. For instance, a fast implementation on the
32-bit processor ARM Cortex-M3 makes use of the in-place processing with 4 rounds un-
rolled and requires only 272 bytes on the stack [6, Section 3.2.1].

2 Structure of the Kђѐѐюј code package

TheKђѐѐюј code package gathers different free and open-source implementations of Kђѐ-
ѐюј and variants. It is organized as illustrated in Figure 1. At the top, the high-level cryp-
tographic services are implemented in plain C, without any specific optimizations. At the
boĴom, the low-level services implement the permutations and the state input/output
functions, which can be optimized for a given platform. The interface between the two
layers is called SnP, abbreviated from “state and permutation”.

Keccak-f[200] Keccak-f[1600] Keccak-p[800, 12] Primitive

Sponge Duplex Construction

Hashing MAC PRNG Auth. Enc. Mode

SnP

Fig. 1. The structure of the Kђѐѐюј code package.

The situation is similar for parallelized services, as illustrated in Figure 2. The interface is
adapated to the parallelism and is called PlSnP (“parallel states and permutations”).

This structure simplifies the set of optimized implementations on different platforms.
Nearly all the processing takes place in the evaluation of the Kђѐѐюј- f permutation as
well as in adding (using bitwise addition of vectors in GF(2)) input data into the state
and extracting output data from it. The (Pl)SnP interfaces help isolate the parts that need
to bemost optimized,while the rest of the code can remain generic. Optimized implemen-
tations can be interchanged and a developer can select the best one for a given platform.
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2×Keccak-f[1600] 4×Keccak-p[1600, 12] 8×Keccak-f[1600] Primitive

Parallel Sponge Construction

Tree Hashing Authenticated Encryption Mode

PlSnP

Fig. 2. The structure of the Kђѐѐюј code package for modes exploiting parallelism.

2.1 SnP

The low-level services implement the different permutationsKђѐѐюј- f [200] toKђѐѐюј- f [1600]
and Kђѐѐюј-p[200, nr] to Kђѐѐюј-p[1600, nr]. Note that these two permutation families are
closely related. In Kђѐѐюј-p the number of rounds is a parameter while in Kђѐѐюј- f it is
fixed. As Kђѐѐюј- f are just instances of Kђѐѐюј-p, we focus on the laĴer here.

Both the sponge and duplex constructions operate on a state. They apply a given per-
mutation to it, add data into it or extract data from it. Therefore we define a layer that
supports these three operations and their combination: the permutation and state man-
agement. We are aware that this slightly deviates from the layering depicted in Figure 1,
as we support in fact operations that sponge and duplex need to perform on the state,
including applying the permutation.

The low-level services provide an opaque representation of the state (i.e., of which the
user does not have to know the details), together with functions to add data into and
extract data from the state. This allows using an optimized implementation of Kђѐѐюј-p
that relies on a specific representation of the state, such as lane complementing or bit in-
terleaving. Together with the permutations themselves, the low-level services implement
the SnP interface, including functions:

– to initialize the state;

– to add (in GF(2)) or to overwrite bytes to the state;

– to extract bytes from the state, and optionally to add them to a buffer;

– to apply the permutation.

In stream and authenticated encryption, part of the output is used as a key stream, which
is added to the plaintext or to the ciphertext. This addition is done by the low-level func-
tions. The idea is that the higher level should be relieved from processing data, as this
may need to be optimized in a platform-specific way.

2.2 PlSnP

On several platforms, it is advantageous to execute the Kђѐѐюј-p permutation on several
state values in parallel as it can result in faster processing per input/output data unit than
when using sequential executions. This is typically useful for tree hashing modes, key
stream generation and authenticated encryption.

We define an opaque structure that gathers n states, currently for n ∈ {2, 4, 8}. The PlSnP
interface offers a function performing the Kђѐѐюј-p permutation on the n state instances
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in parallel. On a platform that does not benefit from parallelism, this multi-instance func-
tion can call the single-permutation implementation n times as a fall-back. Or more gen-
erally, a n-times function can call a n

2i -times function as a fall-back.

The reason for making the structure opaque is to allow an optimized implementation
organizing the n states in a favorable way. For instance, an implementation using 128-
bit SIMD instructions could store the 64-bit lane (x, y) of state #0 immediately followed
by the 64-bit lane (x, y) of state #1 so as to be able to load the two lanes in one shot, as
proposed in [6, Section 3.1.3].

The SnP interface includes functions:

– to initialize the n states;

– to add (in GF(2)) or to overwrite bytes to one of the states;

– to add or to overwrite bytes in all the states at once (with the granularity of a lane);

– to extract bytes from one of the states, and optionally to add them to a buffer;

– to extract bytes (and optionally add them) from all the states at once (with the granu-
larity of a lane);

– to apply the permutation on all the states.

2.3 High-level services

In the Kђѐѐюј code package, the currently implemented services are:

– the Kђѐѐюј sponge functions;

– the Kђѐѐюј duplex objects;

– the six approved FIPS 202 instances [13], i.e.,

• the SHAKE128 and SHAKE256 extendable output functions and

• the SHA-3 hash functions;

– a pseudo-random number generator based on Kђѐѐюј duplex objects;

– NIST’s fast parallel hash (FPH) proposal [14];

– the authenticated encryption schemes

• Rіѣђџ, Lюјђ, Sђю, Oѐђюћ and LѢћюџ KђѦюј,

• Kђѡїђ Jџ and Kђѡїђ Sџ;

– KюћєюџќќTѤђљѣђ.

3 KюћєюџќќTѤђљѣђ

KюћєюџќќTѤђљѣђ is a recently proposed extendable output function (XOF), i.e., a gener-
alized cryptographic hash function with arbitrary output length [9]. As illustrated on Fig-
ure 3, it combines the use of the Kђѐѐюј-p[1600, nr = 12] permutation defined in FIPS 202
with the sponge construction, the parallelism of tree hashing, final node growing and
SюјѢџю coding [5]. It cuts the input string into chunks of B = 8192 bytes.
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Fig. 3. Schematic of KюћєюџќќTѤђљѣђ, where the arrows denote calls to F defined as
Ѡѝќћєђ[Kђѐѐюј-p[1600, nr = 12], pad10∗1, r = 1344].

3.1 Implementation

We implemented KюћєюџќќTѤђљѣђ in C and made it available in the Kђѐѐюј code pack-
age. The implementation has an interface that accepts the input message in pieces of ar-
bitrary sizes. This is useful if a file, larger than the memory size, must be processed.

We have integrated the KюћєюџќќTѤђљѣђ code as illustrated on Figure 4. In particular, we
instantiate the sponge construction on top of Kђѐѐюј-p[1600, nr = 12] to implement the
function F, at least to compute the final node. The function F on the leaves is computed
as much in parallel as possible, i.e., if at least 8B input bytes are given by the caller, it uses
a function that computes 8 times Kђѐѐюј-p[1600, nr = 12] in parallel; if it is not available
and if at least 4B bytes are given, it computes 4×Kђѐѐюј-p[1600, nr = 12] in parallel; and
so on. If no parallel implementation exists for the given platform, or if not enough bytes
are given by the caller, it falls back on a serial implementation like for the final node.

p[1600, 12] 2×p[1600, 12] 4×p[1600, 12] 8×p[1600, 12]

SnP PlSnP

KeccakSponge.c

KangarooTwelve.c

Fig. 4.The structure of the code implementingKюћєюџќќTѤђљѣђ in theKђѐѐюј code pack-
age.

The Kђѐѐюј code package foresees that the serial and parallel implementations of the
Kђѐѐюј-p permutation can be optimized for a given platform. Naturally, the code for the
tree hash mode and the sponge construction is generic C, without optimizations for spe-
cific platforms, and it accesses the optimized permutation-level functions through SnP
and PlSnP.
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3.2 256-bit SIMD

Recent processors, in the Intel’s® Haswell and Skylake families, support a 256-bit SIMD
instruction set called AVX2™. We can exploit it to compute 4 × Kђѐѐюј-p[1600, nr = 12]
efficiently.

On an Intel® Core™ i5-6500 (Skylake), we measured that 1 × Kђѐѐюј-p[1600, nr = 12]
takes about 530 cycles, while 2× about 730 cycles and 4 ×Kђѐѐюј-p[1600, nr = 12] about
770 cycles. This does not include the time needed to add the input bytes to the state. Yet,
this clearly points out that the time per byte decreases with the degree of parallelism.

Figure 5 displays the number of cycles for inputmessages up to 150, 000 bytes.Microscop-
ically, the computation time steps up for every additional R = 168 bytes, but this is not
visible on the figure.Macroscopically, when |S| < B, the time is a straight linewith a slope
of about 3.72 cycles/byte, i.e., the speed for F implemented serially. At |S| = B = 8192,
there is a slight bump (a) as the tree gets a leaf, which causes an extra evaluation of
Kђѐѐюј-p[1600, nr = 12]. When |S| = 3B = 24, 576, two leaves can be computed in par-
allel and the number of cycles drops. When |S| = 5B = 40, 960, four leaves can be
computed in parallel and we see another drop. From then on, the same paĴern repeats
and one can easily identify the slopes of serial, ×2 and ×4 parallel implementations of
Kђѐѐюј-p[1600, nr = 12].

Note that a more advanced implementation could in principle remove the peaks
of Figure 5 and make it monotonous. It could do so by using, e.g., the fast 4 ×
Kђѐѐюј-p[1600, nr = 12] implementation even if there are less than 4B bytes available,
with dummy input bytes. However, at this point, we preferred code simplicity over speed
optimization.

Figure 6 shows the implementation cost in cycles per bytes. To determine the speed in
cycles per byte for long messages in our implementation, we need to take into account
both the time to process 4B input bytes in 4 leaves (or a multiple thereof) and to process a
whole block of chaining values in the final node. Regarding the laĴer, 21 chaining values
fit in exactly 4 blocks of R = 168 bytes. Hence, we measure the time taken to process
an extra 84B = lcm(4B, 21B) bytes. These results are reported in Table 1, together with
measurement on short messages.

In our implementation, the final node is always processed with a serial implementation.
In principle, a more advanced implementation could buffer about B bytes of chaining
values and process them in parallel to the leaves. Again, we preferred to keep our code
simple.

4 512-bit SIMD

Intel® announced the development of processorswith theAVX-512™ instruction set. This
instruction set will support 512-bit SIMD instructions, enabling efficient implementations
of 8 ×Kђѐѐюј-p[1600, nr = 12]. In addition to a higher degree of parallelism, we also ex-
pect that some new features of AVX-512™ will benefit to the implementation of Kюћєю-
џќќTѤђљѣђ, of FPH and of Kђѐѐюј in general.

– Rotation instructions. With the exception of AMD’s® XOP™, earlier SIMD instruction
sets did not include a rotation instruction. This means that the cyclic shiĞs in θ and
ρ had to be implemented with a sequence of three instructions (shiĞ leĞ, shiĞ right,
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Fig. 6. The number of cycles per byte of KюћєюџќќTѤђљѣђ on an Intel® Core™ i5-6500
(Skylake) as a function of the input message size.
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XOR). With a rotation instruction, cyclic shiĞs are thus reduced from three to one
instruction.

– Three-input binary functions.AVX-512™offers an instruction that produces an arbitrary
bitwise function of three binary inputs. In θ, computing the parity takes four XORs,
which can be reduced to two applications of this new instruction. Similarly, the non-
linear function χ can benefit from it to directly compute ax + (ax+1 + 1)ax+2.

– 32 registers. Compared to AVX2™, the new processors will increase the number of
registers from 16 to 32. As Kђѐѐюј-p has 25 lanes, this will significantly decrease the
need to move data between memory and registers.

At this time of writing, we do not have access to a machine that supports it, but we never-
theless developed an implementation based on a simulation. Romain Dolbeau reported
that it works correctly on an Intel® Xeon Phi™ 7250 [11].

Processor Short messages Long messages
Intel® Core™ i5-4570 (Haswell) 4.15 c/b 1.44 c/b
Intel® Core™ i5-6500 (Skylake) 3.72 c/b 1.22 c/b
Intel® Xeon Phi™ 7250 (Knights Landing) 4.56 c/b 0.74 c/b

Table 1. The overall speed for short (|S| = nR ≤ B) and for long (|S| ≫ B) messages.
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