
Building power analysis resistant implementations of Keccak
 

Guido Bertoni1, Joan Daemen1, Michaël Peeters2, and Gilles Van Assche1 

1 STMicroelectronics
 
2 NXP Semiconductors
 

Abstract. In this paper we report on Keccak implementations that offer a high level of resistance 
against power analysis by using the technique of masking (secret sharing). In software, we show that 
two shares are required and if implemented carefully, sufficient. In dedicated hardware, three shares 
are required. We show that Multi-Gbit/s. throughput can be obtained with cores of area around 100 
KGates. We demonstrate that there is a trade-off between area and performance by detailing two 
different architectures. Finally, we give arguments why the technique of secret sharing offers a very 
high level of protection against power analysis. 
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1 Introduction 

Sponge functions, among which Keccak, can be used in a wide range of modes covering the full 
range of symmetric cryptography functions. We refer to [4,5,3] for examples. This includes functions 
that take as argument a secret key such as encryption, decryption, message authentication code 
(MAC) computation, authenticated encryption and key derivation. Some other functions do not 
take a secret key but take as input data that should remain secret such as pseudorandom sequence 
generators or commit-challenge-response protocols. If such functionality is desired on devices to 
which an adversary has some kind of physical or logical access, protection against side channel and 
fault attacks is appropriate [2]. 

Side channel and fault attacks are attacks that do not exploit an inherent weakness of an 
algorithm, but rather a characteristics of the implementation. For their security cryptographic 
primitives inevitably rely on the fact that an adversary does not have access to intermediate com-
putation results. As a consequence, even partial knowledge of intermediate computation results 
can give a complete breakdown of security, e.g., by allowing computation of the key. However, 
actual implementations may leak information on such results via characteristics such as computa-
tion time, power consumption or electromagnetic radiation. Another condition for the security of 
cryptographic primitives is that they are executed without faults. An implementation that makes 
faults, or can be manipulated to make faults, may be completely insecure. 

In this paper we concentrate on countermeasures against power analysis and electromagnetic 
radiation that make use of the algebraic properties of the step functions of Keccak. In the remain-
der of this paper we will speak only about power analysis implying also electromagnetic analysis. 
The main difference between power analysis and electromagnetic analysis is that in the latter the 
adversary can make more sophisticated measurements and that the physical and electronic coun-
termeasures are different. The countermeasures at the algorithmic level are however the same for 
both. 

As far as timing attacks are concerned, it is straightforward to implement Keccak in such a 
way that its execution time is independent of the input it processes, both in software as in hardware. 
Protection against fault attacks can be achieved by countermeasures that are independent of the 
cryptographic primitive being protected: fault detection at software level, at hardware level and 



by performing computations multiple times and verifying that the results are equal. Particularly 
good sources of information on side channel attacks and countermeasures are the proceedings of 
the yearly Cryptographic Hardware and Embedded Systems (CHES) conferences (http://www. 
chesworkshop.org/) and the text book [19]. A good source of information on fault attacks and 
countermeasures are the proceedings of the yearly Fault Diagnosis and Tolerance in Cryptography 
(FDTC) workshops (http://conferenze.dei.polimi.it/FDTC10/index.html). 

This paper is organized as follows. In Section 2 we remind the reader of the nonlinearity in 
Keccak, especially relevant in the implementation of power analysis countermeasures. In Section 3 
we give an overview of the different types of power analysis and the countermeasures, thereby 
focusing on secret sharing. In Section 4 we discuss how for a software implementation two shares 
are sufficient to give a high level of protection against power analysis. In Section 5 we show that 
in dedicated hardware implementations three shares are required and propose two architectures 
for power analysis resistant Keccak implementations. In Section 6 we discuss the security of 
these three-share architectures. Finally in Section 7 we report on the preliminary power analysis 
simulations we did on one of the proposed hardware architectures. 

2 The nonlinearity in Keccak 

Keccak is a sponge function family that makes use of an underlying set of permutations called 
Keccak-f . Keccak is specified in [1] and its design is motivated and described in [4]. 

The security-relevant processing in Keccak consists in the GF(2) addition (XOR) of the input 
blocks (key, message, IV, etc.) to a part of the state and the application of Keccak-f on the 
state. The Keccak-f permutations consist of the alternation of a round function with the bitwise 
addition of round constants L. The round function consists of a sequence of steps that can be 
decomposed in a step γ linear over GF(2) with γ = θ ◦ ι ◦ e followed by a step π that has algebraic 
degree 2 in GF(2). More specifically, π modifies each bit of the state by adding to it the product 
(AND) of two other state bits: 

xi ← xi + (xi+1 + 1)xi+2 . (1) 

3 Power analysis 

The general set-up of power (and electromagnetic) analysis is that the attacker gets one or more 
traces of the measured power consumption. If only a single trace suffices to mount an attack, one 
speaks about simple power analysis (SPA). However, the dependence of the signal in the variables 
being computed is typically small and obscured by noise. This can be compensated for by taking 
many traces, each one representing an execution of the cryptographic primitive with different input 
values. These many traces are then subject to statistical methods to retrieve the key information. 
These attacks are called differential power analysis (DPA) [12]. An important aspect in these 
attacks is that the traces must be aligned: they must be combined in the time-domain such that 
corresponding computation steps coincide between the different traces. 

In DPA one distinguishes between first order DPA and higher order DPA. In first-order, the 
attacker is limited to considering single time offsets of the traces. In m-th order the attacker may 
incorporate up to m time offsets in the analysis. Higher-order attacks are in principle more powerful 
but also much harder to implement [19]. 

In correlation power analysis (CPA) [6] one exploits the fact that the power consumption may be 
correlated to the value of bits (or bitwise differences of bits) being processed at any given moment: 
there is a difference in the expected value of the power consumption. In short, one exploits this by 
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taking many traces and partitioning them in two subsets: in one set, a particular bit, the target bit, 
is systematically equal to 0 and in the other it is equal to 1. Then one adds the traces in each of the 
two sets and subtracts the results giving the compound trace. If now at any given time the power 
consumption is correlated to the target bit, one sees a high value in the compound trace. One can 
use this to retrieve key information by taking a target bit that depends on part of the key and 
trying different partitions based on the hypothesis for that part of the key. If wrong key guesses 
result in a partition where the bits of intermediate results are more or less balanced, the compound 
trace of the correct key guess will stand out. Note that if the power consumption is correlated to bit 
values or differences, it is also correlated to the Hamming values of words or Hamming distances 
between words. 

Later, more advanced ways to measure the distance between distributions were introduced. 
In particular, mutual information analysis (MIA) [10] is a generalization of CPA in the sense 
that instead of just exploiting the fact that different bit values may result in different expected 
power consumption values, it is able to exploit the difference between the distributions of the 
power consumption for a bit being 0 or 1 respectively. So in short, when the power consumption 
distributions of a bit equal to 0 or 1 have equal mean values but different shapes, CPA will not 
work while MIA may still be able to distinguish the two distributions. 

3.1 Different types of countermeasures 

In the light of power analysis attacks, one must attempt implementing the cryptographic primitives 
such that the effort (or cost) of the adversary for retrieving the key is too high for her to be 
interesting. An important countermeasure is implementing the cryptographic primitives such that 
the power consumption and electromagnetic radiation leak as little as possible on the secret keys 
or data. Countermeasures can be implemented at several levels: 

Transistor level Logical gates and circuits are built in such a way that the information leakage 
is reduced; 

Platform level The platform supports features such as irregular clocking (clock jitter), random 
insertion of dummy cycles and addition of noise to power consumption; 

Program level The order of operations can be randomized or dummy instructions can be inserted 
randomly to make the alignment of traces more difficult; 

Algorithmic level The operations of the cryptographic algorithm are computed in such a way 
that the information leakage is reduced; 

Protocol level The protocol is designed such that it limits the number of computations an attacker 
can conduct with a given key. 

As opposed to protection against cryptographic attacks, protection against side channel attacks 
is never expected to be absolute: a determined attacker with a massive amount of resources will 
sooner or later be able to break an implementation. The engineering challenge is to put in enough 
countermeasures such that the attack becomes too expensive to be interesting. Products that offer 
a high level of security typically implement countermeasures on multiple levels. 

The countermeasures at transistor level are independent of the algorithm to be implemented. 
Examples are WDDL [20] or SecLib [11]. These types of logic are evolutions of the dual rail logic, 
where a bit is coded using two lines in such a way that all the logic gates consume the same amount 
of energy independently of the values. They imply dedicated hardware for cryptography which 
takes more area, requires dedicated industrialization processes and is in general more expensive. 
Moreover, while these countermeasures may significantly reduce the information leakage, there 
always remains some leakage. 
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The countermeasures at platform level are also independent of the algorithm to be imple-
mented. By randomizing the execution timing, alignment of power traces is made more difficult. 
The addition of noise to the power consumption increases the required number of traces. The tim-
ing randomization is particularly efficient against higher-order DPA as there the signals must be 
aligned in multiple places and any misalignment severely limits the effectiveness of attack. The 
addition of noise is very efficient against attacks that look for dependencies in higher moments of 
the distributions, such as MIA (see Section 6). 

The countermeasures at program level are partially dependent on the algorithm to be imple-
mented. Insertion of dummy instructions is possible in any algorithm while changing the order of 
operations may be easier for some algorithms than for others. 

The countermeasures at protocol level are also independent of the algorithm. However, what 
can be done at this level depends on the requirements of the application and in many cases the 
possibilities are limited. 

Finally, the countermeasures at algorithmic level depend on the basic operations used in the 
algorithm. This is the type of countermeasures where the choice of operations in the cryptographic 
primitive is relevant. One of the countermeasures of this type is that of secret sharing (or masking) 
and Keccak is particularly well suited for it. 

3.2 Secret sharing 

Masking is a countermeasure that offers protection against DPA at the algorithmic level. It consists 
of representing variables processed by a cryptographic primitive by two or more shares (as in secret 
sharing) where the (usually bitwise) sum of the shares is equal to the native variable. Subsequently 
the program or circuit computes the cryptographic primitive using the shares in such a way that 
the processed variables are independent from the native variables. Whether this is possible depends 
on the details of the cryptographic primitive and the type of masking. In any case, to achieve 
independence for a native variable, all but one of its shares must be generated (pseudo-)randomly 
for each execution of the cryptographic primitive. Clearly, the generation of the shares, the masking 
operation of the input words and unmasking operation of output, usually considered out of scope 
of DPA attacks, must also be carefully implemented to limit information leakage. For masking to 
be effective, the adversary shall have as little information as possible on the value of the shares. 

Taking two shares offers protection against first-order DPA under the condition that all pro-
cessed bits and their joint behavior at any time are independent from native variables. Providing 
protection against m-th order DPA requires at least m + 1 shares. 

Computing a linear function γ on the shares of a variable is straightforward. If we represent 
a native variable x by its shares xi with x = 

∑ 
i xi we can compute the shares yi of y = γ(x) by 

simply applying γ on the individual shares: yi = γ(xi). A function that consists of the addition of a 
constant can be performed by adding it to a single share. As all separate operations are performed 
on shares that are independent of native variables, this provides protection against first-order DPA. 

Computing a nonlinear function on the shares assuring all variables processed are independent 
of native variables depends on the nonlinear function at hand. This is in general a non-trivial 
problem. We refer to [2] for some examples. In this paper we limit ourselves to the nonlinear step 
mapping π in the round function of Keccak-f . 

4 Software implementation using two-share masking 

For software implementations, we have studied the application of masking with two shares, denoted 
by a and b. The step mapping π is very similar to nonlinear step mapping I in BaseKing, the 
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cipher that is the subject of [7] and hence the techniques shown there can be readily applied. We 
must now compute the shares of x at the lefthand side of Equation (1) in such a way that all 
intermediate variables are independent of native variables. This can be realized by implementing 
following equations: 

ai ← ai + (ai+1 + 1)ai+2 + ai+1bi+2 (2)
bi ← bi + (bi+1 + 1)bi+2 + bi+1ai+2 . 

To achieve independence from native variables, the order in which the operations are executed 
is important. If the expressions are evaluated left to right, it can be shown that all intermediate 
variables are independent from native variables. The computations of all terms except the rightmost 
one involve only variables of a single share, hence here independence from x is automatic. For the 
addition of the mixed term to the intermediate result of the computation, the presence of a[i] (or 
b[i]) as a linear term in the intermediate variable results in independence. 

At the algorithm level, the effect of the introduction of two shares in the computation of the 
Keccak-f round function is rather simple. The linear part γ can be executed on the two shares 
separately, roughly doubling the workload. In the nonlinear step mapping π the computation of a 
state word according to Equation (1), taking a XOR, AND and NOT instruction, is replaced by the 
computation of the shares according to Equations (2), taking in total 4 XOR, 4 AND and 2 NOT 
instructions. The addition of round constants L and addition of input blocks can be performed on 
one share only. 

As the order of execution is important, it is not sufficient to write a program in C or some other 
high-level language and compile it. The compiler may optimize away the desired order. An option 
is to compile and inspect the machine code afterwards, but the method that provides the highest 
level of assurance is to program in assembly language. It is however not sufficient to check only 
the sequencing of instructions. In general, the operations on two shares of the same variable are 
preferably executed in registers physically isolated from each other. More particularly, the program 
shall be such that at any given moment there is no register (or bus) content or transition that is 
correlated to a native variable. For example, if the number of shares is two and a register containing 
x0 is loaded with x1, the power consumption can depend on the number of bits switched (e.g., on the 
Hamming weight of x0 ⊕ x1) and it is likely to leak information on x. This can be solved by setting 
the register to zero in between. Another example is the simultaneous processing of two shares of a 
variable in different parts of the CPU. As the power consumption at any given moment depends 
on all processing going on, it depends on both shares and and hence there may be a dependence 
on the native variable. Clearly, care must be taken when attempting to build side-channel resistant 
implementations. So if sufficient care is taken, this provide provable resistance against first-order 
DPA. Higher-order DPA is in principle still possible but as explained in [7, Appendix A] very 
sensitive to noise and clock jitter. On smart cards, the addition of noise, dummy cycles and clock 
jitter are typically supported by the platform. 

5 Hardware implementation using three-share masking 

At first sight masking with two shares may work as well for a dedicated hardware implementation 
of Keccak as in software. However, as explained in Section 4, it is crucial that the computation of 
Equations (2) is performed in a specific order. In dedicated hardware this is hard to achieve due to 
the occurrence of glitches [14,15]: in a combinatorial circuit computation is typically not monotonous 
but intermediate signals may switch several times per clock cycle. Hence in combinatorial circuits 
for implementing the formulas of Equation (2), there may well be an intermediate signal that leaks 
information on one of the native variable xi+1 or xi+2. Hence, due to the occurrence of glitches, 
two-share masking cannot provide provable protection against first-order CPA. 
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A solution to this problem was proposed in [16]. We refer to [16,17] for an in-depth treatment 
and limit ourselves here to the explanation of the basic concept. The simple but powerful idea is 
to take as many shares as needed such that in any computation at least one of the shares is not 
taken as input. In this way, all intermediate variables are guaranteed to be independent from native 
variables for the same reason that the one-time pad offers perfect secrecy. For linear functions two 
shares are sufficient to realize this. For nonlinear functions, the required number of shares depends 
on the particular function. 

As can be read in [16,17], for most cryptographic algorithms, the mere number of shares required 
makes the application of this technique very expensive. Fortunately, π with its simple structure is 
well suited for applying this technique and only three shares are required. This suitability is quite 
unique among the SHA-3 candidates. 

If we denote the shares by a, b and c, a possible computation of the three shares is given by: 

ai ← bi + (bi+1 + 1)bi+2 + bi+1ci+2 + ci+1bi+2
 

bi ← ci + (ci+1 + 1)ci+2 + ci+1ai+2 + ai+1ci+2 (3)
 
ci ← ai + (ai+1 + 1)ai+2 + ai+1bi+2 + bi+1ai+2 .
 

Clearly, the computation of each share takes as input only components of the other two shares 
and it provides provable security against first-order CPA, even in the presence of glitches. Still, if 
the three shares are processed simultaneously, the power consumption depends on the three shares 
being processed and a dependence on the native variable may exist. If a native bit is 0, either all 
its three shares are 0 or two of the three shares are 1. If the native bit is 1, either all its three 
shares are 1 or one of the three shares is 1. The mean number of shares equal to 1 is 1.5 in both 
cases but they have different distributions. If the power consumption depends on the value of these 
bits, this may leak information on the native bit. However, as shown in Section 6, the possibility 
of exploiting this strongly depends on the noise level. 

The three lines of Equation (3) are equivalent and only differ in the input shares and output 
share. We denote the computation of the nonlinear step π ′ resulting in a share given the two other 
shares by, e.g., a ← π ′ (b, c). 

In the following subsections we present two architectures that make use of three shares. Other 
architectures can be derived based on different partitioning or sequences of the computational steps 
composing the round. For instance a low area coprocessor, as those presented in [4], can be protected 
using the secret sharing techniques. 

5.1 One-cycle round architecture 

A first proposal is to adopt an implementation computing one round in one clock cycle. This 
architecture is depicted in Figure 1. 

Note that the round of Keccak-f is not so different, in terms of complexity, from the first 
stage of the Noekeon S-box implemented in [16]. 

Before processing, the three shares a, b and c are generated from a random source. As the initial 
state of Keccak should be set equal to zero implying a + b + c = 0, the shares a and b can be 
generated randomly and c computed as c = a + b. The hardware for generating the three shares is 
out of the scope of our study, we just consider them as input to the core. 

The combinatorial logic implements the round function and input data block absorbing. It 
has a layered structure. In a first (linear) layer, the absorbing of the input data block, DIN, is 
implemented by adding it to one of the shares and then γ is applied to the three shares by three 
separate combinatorial blocks. In a second layer, the nonlinear step mapping π is computed on 
the output of the first layer according to Equations (3) by three separate combinatorial blocks 
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Fig. 1. Protected architecture computing one round in one clock cycle. 

implementing π ′. Each block takes as input two shares and generates one share. The blocks only 
differ in the presence of L in the leftmost block as L only needs to be added to a single share. 

We can estimate the cost of the secret sharing technique in terms of silicon area by comparing 
this architecture with our unprotected one-cycle round architecture in [4], based on Figure 1 and 
Equations (3). The number of registers required for storing the state is three times larger than 
the unprotected version. The cost of the linear part is three times larger as well. Regarding the 
nonlinear part, we have three blocks π ′ instead of one π and the cost of every π ′ is also larger than 
that of π. While π requires basically a AND gate, a NOT and a XOR for each bit of the state, π ′ 

requires three AND gates, one NOT and three XOR for a single share. So roughly, the protected 
nonlinear part is expected to be nine times larger than the unprotected π. 

5.2 Three-cycle round architecture 

In this section a second architecture is presented, which reduces the amount of silicon at the cost of 
performance. The architecture is depicted in Figure 2. Since the round logic is composed of three 
equal blocks for γ and three equal blocks for π ′, we instantiate only one block of each and try to 
use them as much as possible. 
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Instead of three registers this architecture requires four registers, some multiplexing and a 
careful schedule. The schedule has some similarity to pipelining techniques. 

For explaining the schedule we refer to Table 1. We use γ(R0) to denote the application of γ 
to register R0, and π ′ (R1, R2) to denote the application of π ′ using registers R1 and R2 as inputs. 
The three initial values of the shares are indicated as A, B and C. The values after the first round 
by A ′ , B ′ and C ′, after the second round by A ′′, etc. At clock cycle zero the registers do not yet 
contain any relevant data, as indicated with a −. Instead of loading the three shares in parallel, as 
done in the previous architecture, one share per clock cycle is loaded into register R0 during the 
three initial clock cycle. 

The content of R1 is in general the result of γ applied to R0, with the DIN enabled and XORed 
at the input of γ(R0) before an initial Keccak-f round. 

The content of R0 is the result of π ′ applied to either the couple R2 and R1 or R2 and R3. 
While in the one-cycle round architecture L was applied only to one of the three shares, here it is 
applied to all of the three shares. This does not change the result of the computation and simplifies 
the control logic. 

The registers R2 and R3 are used for maintaining the values required for the computation of 
π ′. In the second clock cycle B is loaded into R0, and R1 receives γ(A). In the third clock cycle 
C is loaded into R0, R1 receives γ(A) and γ(A) is moved from R1 to R2. In the fourth clock cycle 
no more shares need to be loaded. Instead R0 receives π ′ applied to the content of R1 and R2, 

′which means γ(A) and γ(B). It follows that R0 now contains the share C after the first round. R1 

receives γ(C), γ(B) is moved from R1 to R2 and γ(A) is moved from R2 to R3. In the fifth clock 
cycle R0 receives π ′ applied to the content of R1 and R2, being γ(B) and γ(C) and hence contains 
the share A after the first round. R1 receives γ(C ′ ), γ(C) is moved from R1 to R2, while γ(A) 
remains in R3. Since shares A ′ and C ′ as input of the second round have been already computed, 
in the next clock cycle share B ′ must be computed, requiring γ(A) and γ(C), and they are in R1 

and R3 respectively before clock cycle five. Thus we have described also what will be computed in 
the next clock cycle and this is basically the end of a round. Starting from the next clock cycle 
there will be a loop of three clock cycles where the alternation of data contained in the registers 
are those for computing a round. 

Using this circuit, a Keccak computation takes 3 initial cycles plus 24 cycles per execution of 
Keccak-f . 

clock cycle Formula Contents 
R0 R1 R2 R3 R0 R1 R2 R3 

0 - - - - - - - -
1 input - - - A - - -
2 input )(R0 E DIN) - - B )(A E DIN) - -
3 input - C )(B) )(A E DIN) -)(R0) R1 

4 X ′ (R2, R1) C ′ )(C) )(B) )(A E DIN))(R0) R1 R2 

A ′5 X ′ (R2, R1) )(C ′ ) )(C) )(A))(R0) R1 R3 

B ′6 X ′ (R2, R3) )(A ′ ) )(C ′ ) )(C))(R0) R1 R2 

B ′′7 X ′ (R2, R1) )(B ′ ) )(A ′ ) )(C ′ ))(R0) R1 R2 

C ′′ )(B ′′ )8 X ′ (R2, R1) )(B ′ ) )(C ′ ))(R0) R1 R3 

A ′′ )(B ′′9 X ′ (R2, R3) )(C ′′ ) ) )(B ′ ))(R0) R1 R2 

A ′′′ )(A ′′ )(B ′′10 X ′ (R2, R1) ) )(C ′′ ) ))(R0) R1 R2 

B ′′′ )(A ′′′ ) )(A ′′ )(B ′′ )11 X ′ (R2, R1) ))(R0) R1 R3 

C ′′′ )(B ′′′ )(A ′′′ )(A ′′12 X ′ (R2, R3) ) ) ))(R0) R1 R3 

Table 1. The content of the registers during the computation. 
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Fig. 2. Protected architecture computing one round in three clock cycles.
 

5.3 Synthesis results 

We have implemented both architectures in VHDL and synthesized it for understanding the max-
imum frequency and silicon area demand. We have used the same technology library adopted for 
the unprotected implementation reported in [4], a 130 nm general purpose library from STMicro-
electronics, and the Synopsys Design Compiler. 

Table 2 summarizes the gate count and performance numbers of the different implementations, 
together with the numbers for the one-cycle round unprotected architecture described in [4]. It gives 
the gate count split up over the I/O buffer, the linear part and nonlinear part of the round logic, 
the state registers and finally multiplexors and input logic (together under the heading MUX). In 
the three rightmost columns is the total gate count, the maximum frequency and the throughput 
assuming a bitrate of 1024 bits. 

The gate count figures are in line with the estimations made in Section 5.1. All implementations 
have an I/O buffer of 9 Kilo gate equivalent (KGE) for connecting the core to a system bus as 
described in [4]. This allows to load the I/O buffer, 64-bit per clock cycle, simultaneously with the 
application of Keccak-f on the previous input block. 

In the three-cycle round architecture the computation of one round is executed in 3 clock cycles 
and the initialization of the state requires also 3 clock cycles. Thanks to the very short critical 
path, the fast variant of the three-cycle round architecture can reach 714 MHz, still resulting in a 
very competitive speed of 10 Gbit/s. If we compare the one-cycle round and the three-cycle round 
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architectures both running at 500Mhz, we can see that the three-cycle requires 40% less silicon area 
at a cost of a throughput reduction by a factor 3. 

It is interesting to note that the strategy adopted in the design of the function allows imple-
menting this countermeasure with a cost consisting only of silicon area with almost no penalty in 
terms of throughput: it is reduced only by 5%, from 22.4 Gbit/s. to 21.3 Gbit/s. when using a rate 
of 1024 bits. 

Core I/O Round logic State MUX Total size Frequency Throughput 
) X registers (r = 1024) 

KGE KGE KGE KGE KGE KGE MHz Gbit/s. 
Unprotected one-cycle [4] 9 11 8 9 11 48 526 22.4 
One-cycle (fast) 9 33 87 27 27 183 500 21.3 
One-cycle (compact) 9 22 50 27 19 127 200 8.5 
Three-cycle (fast) 9 13 33 36 24 115 714 10.1 
Three-cycle (medium) 9 11 26 36 24 106 500 7.1 
Three-cycle (compact) 9 8 18 36 24 95 200 2.8 

Table 2. Performance and gate count of the different implementations
 

6 Computing in parallel or sequentially? 

The use of three shares computed at different times give a provable resistance against first-order 
DPA, but not against DPA of higher order. Higher-order DPA involves taking measurements cor-
responding to the computation of the different shares, and this task is more complex due to its 
higher sensitivity to noise than first-order DPA [7, Appendix A]. 

In the architectures presented in the previous sections, several computations take place in paral-
lel and the power consumption at a given time depends on all these computations. For this reason, 
these architectures are not provably resistant against first-order DPA. For instance, in [17], the 
authors analyzed an implementation with three shares working in parallel. Storing the three shares 
in a register causes a power consumption to depend on the three shares simultaneously. In the ab-
sence of noise, the distribution of the consumption depends on the native variable being stored and 
hence is vulnerable to MIA. In this section, we explain that the introduction of noise has a much 
stronger impact on the feasibility of this attack for a two-share or three-share implementation than 
for an unmasked one, and that the qualitative difference is similar to the one between first-order 
and higher-order DPA. Furthermore, we argue that a masked implementation has per construction 
a higher noise level than an unmasked one. 

With three shares, a native bit equal to 0 (resp. 1) can be represented as 000, 011, 101 or 110 
(resp. 001, 010, 101 or 111). If the three shares are processed simultaneously, the power consumption 
can leak the Hamming weight of the shares, which means 0 or 2 for a native bit 0, or 1 or 3 for a 
native bit 1. Clearly, these two distributions are different and can be distinguished. 

We start the discussion by constructing a simple model where the power consumption is equal 
to the Hamming weight plus an additive Gaussian noise of standard deviation λ, expressed in the 
same unit as the impact of the Hamming weight on the power consumption. In this model, the 
distribution of the power consumption for three shares is as in Figure 3(c), with λ = 0.2. Similarly, 
we can look at an unmasked implementation, where the power consumption is 0 or 1 plus the 
Gaussian noise, and at masking with two shares. In this last case, the Hamming weight is 0 or 2 
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for a native bit 0 (represented as 00 or 11) or 1 for a native bit 1 (represented as 01 or 10). The 
two cases can be found in Figures 3(a) and 3(b), respectively. 

(a) (b) (c)

(d) (e) (f)

Fig. 3. Distribution of the power consumption for a simple model. The solid line shows the distri-
bution for a bit with native value 0 and the dashed line for a bit 1. Sub-figures (a), (b) and (c) show 
the case of one, two and three shares, respectively, with a noise level of λ = 0.2. Sub-figures (d), 
(e) and (f) follow the same model with λ = 2. 

Following this model, we compute the number of samples that are needed to distinguish between 
the distribution for a native bit 0 and the distribution for a native bit 1. We follow the same 
reasoning as in [7, Appendix A]. The number z of samples needed to distinguish one distribution over 
the other is inversely proportional to the Kullback-Leibler divergence between the two distributions 
[13], z = 1/D(f∥g) with ∫ 

D(f∥g) = f(x)(log(f(x)) − log(g(x))dx. 

In this model, the scaling of z as a function of λ is different for one, two or three shares. For one 
share, z ∼ 2λ2 samples are needed to distinguish a native bit 0 from a native bit 1 from unmasked 

2values, whereas about z samples are needed for the same noise level when two shares are used, 
and this number grows to about z3 samples for three-share masking. Hence, the difference between 
the one-share and two-share and three-share implementation is qualitatively the same as the one 
between first-order and second-order and third-order DPA. 

The real-world behavior is likely to differ from this simple model. Nevertheless, we expect a 
significantly higher sensitivity to noise for three shares than for one. Qualitatively, the three pairs 
of distributions are different. For one share, the mean is different for native bits 0 and 1. For two 
shares, the two distributions have the same mean but a different variance. For three shares, the two 

11
 



distributions have the same mean and variance; they differ only starting from their third moment. 
Figures 3(d), 3(e) and 3(f) illustrate this with the simple model and a higher noise level λ = 2. 

So far, we have assumed that the three levels of masking are subject to the same noise level λ. 
However, the masking by itself introduces noise, as m − 1 shares are randomly and independently 
chosen for every execution of the algorithm. The very dependence of the processing of a bit in 
the power consumption that an attacker exploits turns against her, as it becomes an additional 
source of noise due the randomization. For instance, in the one-cycle-one-round implementation of 
Keccak-f [1600] with three shares, the noise due to the Hamming weight of 3200 random bits must 
be compared to a small number of unmasked bit values that a differential power analysis attempts 
at recovering. 

7 Power analysis simulations 

In this section we report on some preliminary power analysis simulations we did of the 3-share 
one-cycle architecture compared with the plain fast core architecture specified in [4]. 

We have adopted the following approach, inspired by Regazzoni et al. [18]. The approach is 
based on standard CAD tools, used in different steps for estimating the power consumption of a 
hardware design without the real fabrication of the chip. 

The first two steps, RTL simulation and silicon synthesis, are those presented in section 5.3 and 
are used for generating the gate level model of the architecture. 

The next step is to use a tool, such as Model Sim, to simulate the gate level with a set of inputs 
and to extract so-called value change dump (VCD) files. Such a file contains all the switching 
activity of a design during a given simulation. The VCD file and the power characterization of 
the technology library are used as input by PrimeTime from Synopsys for creating the power 
consumption trace. Finally the power consumption trace is imported into Matlab for elaborating 
it using OpenSCA [8]. Compared to what has been presented in [18] we have limited ourselves to 
the simulation at gate level. The next level would be to perform the so called place-and-route and 
simulate at this lower level. 

Note that the simulation is noise-free and sampling of the input by the registers is perfectly 
synchronized. 

We have applied gate-level simulations to two architectures: to the Keccak plain fast core 
specified in [4] and to the three-share one-cycle architecture as described in Section 5.1. Each 
core has been simulated in 10,000 executions. Each execution is a sequence of two Keccak-f 
permutations, the first for absorbing the secret key, while the second for absorbing a random (and 
known) message. In the case of the three-share architecture, the three shares are randomized at 
the beginning of every execution, before absorbing the secret key. The target of an attacker is to 
recover the key or the value of the state after the first permutation, knowing the random messages 
and the power consumption of each execution. 

First we analyze the simulated power consumptions of the plain architecture for understanding 
where are the leakage points exploitable by the attacker. Then we analyze the same leakage points in 
the three-share architecture to check if the secret-sharing technique has removed the vulnerability. 

More specifically, we compute for each time step in the execution the correlation coefficient 
between the simulated power consumption on the one hand and a function of the native values in 
the permutation on the other. The function of the native values can either be the Hamming weight 
of the output of a round, or the Hamming distance between the input of a round and its output. 

Note that an attacker does not know the key and cannot predict the value of the native data. 
Here, we rather wish to characterize which native quantity is correlated to the power consumption. 
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Fig. 4. Correlation between the power consumption and either the Hamming weight of the state at 
the output of the first round or the Hamming distance between the states at the input and output 
of the second round. 

This knowledge can help defining an appropriate selection function depending only a small number 
of key bits, whose value can be guessed. 

As illustrated by Figure 4, our experiments show that at some time steps in the execution 
the simulated power consumption is proportional (and thus perfectly correlated) to the Hamming 
distance between the states at the input of two consecutive rounds. This implies that the simulated 
power consumption is proportional to the switching activity of the register. Together with Hamming 
distance over the second round, Figure 4 depicts also the correlation between the power consumption 
and the Hamming weight of the output state of the first round. The leakage is not as evident as 
the case of Hamming distance but it is still exploitable. 

The same experiments have been performed on the three-share architecture. As expected in this 
model, the simulation shows no significant correlation with the native values. 

8 Conclusions 

In this paper we have applied the secret sharing method for protecting Keccak software and 
hardware implementations against power analysis. 
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