
Permutation-based encryption, authentication and
authenticated encryption

Guido Bertoni1, Joan Daemen1, Michaël Peeters2, and Gilles Van Assche1

1 STMicroelectronics
2 NXP Semiconductors

Abstract. While mainstream symmetric cryptography has been dominated by block ciphers,
we have proposed an alternative based on fixed-width permutations with modes built on top
of the sponge and duplex construction, and our concrete proposal Kђѐѐюј. Our permutation-
based approach is scalable and suitable for high-end CPUs as well as resource-constrained
platforms. The laĴer is illustrated by the small Kђѐѐюј instances and the sponge functions
Quark, Photon and Spongent, all addressing lightweight applications. We have proven that
the sponge and duplex construction resist against generic aĴacks with complexity up to 2c/2,
where c is the capacity. This provides a lower bound on the width of the underlying permuta-
tion. However, for keyed modes and bounded data complexity, a security strength level above
c/2 can be proven. ForMAC computation, encryption and even authenticated encryptionwith
a passive adversary, a security strength level of almost c against generic aĴacks can be aĴained.
This increase in security allows reducing the capacity leading to a beĴer efficiency. We argue
that for keyed modes of the sponge and duplex constructions the requirements on the under-
lying permutation can be relaxed, allowing to significantly reduce its number of rounds. Fi-
nally, we present two generalizations of the sponge and duplex constructions that allow more
freedom in tuning the parameters leading to even higher efficiency. We illustrate our generic
constructions with proposals for concrete instantiations calling reduced-round versions of the
Kђѐѐюј- f [1600] and Kђѐѐюј- f [200] permutations.

1 Introduction

In the last decades, mainstream symmetric cryptography has been dominated by block
ciphers: block ciphermodes of use have been employed to performencryption,MACcom-
putation and authenticated encryption. Moreover, most hash functions internally call a
compression function with a block cipher structure at its kernel. From a design perspec-
tive these hash functions merely consist of block ciphers in some dedicated mode of use.
One could argue that the “swiss army knife” title usually aĴributed to the hash function
belongs to the block cipher.

In the last five years, we have proposed new modes of use for, a.o., hashing, MAC
computation and (plain or authenticated) encryption that make use of a fixed-width per-
mutation instead of a block cipher [5,7,6]. Thesemodesmake use of the sponge andduplex
constructions, illustrated in Figures 1 and 2.

In both constructions the width b of the underlying permutation is split in two: an
outer part with size r and an inner part with size c. The rate r determines the efficiency
of the construction and the capacity c the aĴainable security strength, so for a given per-
mutation with width b, the equation b = c + r expresses a trade off between security and
efficiency.

The first concrete instantiation of such a permutation-based sponge function has been
our design Kђѐѐюј [10]. With its seven associated permutations, it goes from a toy prim-
itive to a wide sponge function. In the meanwhile several other sponge functions have
been proposed: Quark [2], Photon [20] and Spongent [12]. Remarkably, the laĴer three
were all put forward as lightweight hash functions. All four designs are based on permu-
tation families covering multiple widths rather than a single width. All together, these
permutations cover a large number of widths ranging from 25 to 1600 bits.

Fig. 1. The sponge construction

Fig. 2. The duplex construction

Additionally, numerous other cryptographic designs have iterated permutations at
their core, such as the hash function Grøstl [19] whose specification counts two 512-bit
permutations P512 and Q512 and two 1024-bit permutations P1024 and Q1024, JH [27] that
makes use of a 1024-bit permutation called E8, or the stream ciphers Salsa and ChaCha [3]
that are based on 512-bit permutations. Moreover, most block ciphers can be converted
into an iterated permutation by fixing the key to some constant. All these permutations
can be used in sponge functions and duplex objects.

In this note, we focus on the intuition behind our parameter choices rather than for-
mal proofs. The outline is as follows. In Section 2, we look at the generic security of keyed
sponge and duplex modes and exploit the known results to increase the efficiency for au-
thentication and (plain or authenticated) encryption. In section 3 we argue that cryptan-
alytic results provide evidence that primitives are much harder to aĴack in keyed modes
than in un-keyed modes and use that observation to propose keyed modes based on
reduced-round variants of Kђѐѐюј- f . Finally, we propose in Section 4 variants dedicated
to authentication (based on Alred) and (authenticated or plain) encryption.

Throughout the text, we use the concept of security strength as used by NIST in its
cryptography standards. It is defined in [22] as a number associated with the amount of work
(that is, the number of operations) that is required to break a cryptographic algorithm or system.
Security strength levels are expressed in bits and a level of n bits implies that the amount
of work to break the system is of the order 2n operations. As exhaustive key search of an
n-bit key takes an amount of work 2n, we will adopt for a target security strength of n,
keys of length n. In its standardsNIST targets five specific security strength levels: 80, 112,
128, 192 and 256 bits. The concrete instances we propose in this note address 80 and 128
bits for the lightweight instances and 128 and 256 bits for the other ones.

2 Increasing the rate in the sponge and duplex constructions

Using the indifferentiability framework we have proven that the sponge and duplex con-
structions are secure against generic aĴacks with complexity below 2c/2 [4]. With this
bound, a desired security strength level of 80 bits implies a capacity of 160 bits and hence
imposes a minimum width for the permutation, which may hinder lightweight applica-
tions. Moreover, permutations with a width just slightly above 160 bits will inevitably
lead to small rates.

When a sponge function or duplex object is used in conjunction with a key, one can
provemore refined bounds taking into account the data complexity. In [8] we have proven
that if the data complexity is limited to 2a r-bit blocks, the keyedmodewithstands generic
aĴacks with time complexity up to 2c−a calls of the underlying permutation. If a < c/2,
this results in an increase of the security strength from c/2 to c − a.

The bound c − a assumes a very powerful adaptive adversary and the intuition be-
hind it is the following. Given sufficient output of a keyed sponge (or duplex) object, an
aĴacker canmake guesses for the inner c bits of the state and verify for each guesswhether
it is consistent with the observed output. In keyed modes of the sponge or duplex con-
struction, the knowledge of the inner part of the state is as valuable as knowing the key.
The probability of success of a single guess is 2−c and hence for typical values of r, i.e.
r ≥ 8, the expected workload of this aĴack is very close to 2c−1 executions of the underly-
ing permutation f . If r > c, this corresponds with generically solving a constrained-input
constrained output (CICO) problem [6] for f with c unknown bits at its input and c un-
known bits at its input. In general an adaptive aĴacker can reduce this expectedworkload
by a factor close to 2a at the cost of 2a adaptively chosen sponge (or duplex) input blocks
by converting this CICO problem in amulti-target CICO problem. Shemust just apply in-
puts to the keyed sponge or duplex instance in such a way that the outer r-bit parts of the
state at the input of f has some chosen value for multiple executions of f . In the duplex
mode this is in general not difficult. The r − 2 outer bits can be fixed to zero by feeding as
σ in a duplexing call the first r − 2 bits of the output Z of the previous duplexing call.

If the adversary can force M executions of f with the same outer r bits but different
inner c bits, the probability of success for a guess becomes M2−c instead of 2−c, reducing
the expected workload roughly by a factor M. We call M the multiplicity of the aĴack.
The bound 2c−a is a consequence of the fact that in the worst case the multiplicity M may
come very close to the data complexity 2a.

In specific use cases an adversary may not have the possibility to enforce the r outer
bits to some fixed value and hence achieving a high multiplicity may be out of reach.
She can count on luck to have collisions in the r outer bits and from observed sponge or
duplex output blocks extract the outer value that occurs most oĞen. The number of times
this outer value is observed is then the multiplicity. If a < 2r, M is expected to be only 1 or

2. Once a comes close to r this value starts to grow. Some use cases in which the aĴacker
cannot enforce the values of the outer bits are the following:

– MAC computation with the sponge construction where the input is the key in a first
sequence of blocks, followed by the message in following blocks. In this case the at-
tacker can choose the message input blocks, but does not know the r outer bits of the
state prior to their absorbing. Note that by MACing many messages with the same
first message block one can enforce the outer part of the state aĞer absorbing the first
message block to be the same, but this also holds for the inner part so it does not con-
tribute to the multiplicity.

– Keystream generation with the sponge construction where the input is a key followed
by a nonce. In this case specifying the same nonce will also not contribute to the mul-
tiplicity.

– Authenticated encryption with the duplex construction (SѝќћєђWџюѝ), with an ad-
versary that does not have active access to the message encryptor. Clearly, in that
case even an adversary that knows the plaintext can only observe duplex inputs and
outputs and not choose their values. Note that access to the message decryptor will
typically only provide plaintexts upon receiving messages with a valid tag.

We have discussed this issue under the name of the passive state recovery problem and
proven an upper bound for the generic success probability in [5] .

Clearly, these security bounds decrease the required capacity for a given target secu-
rity strength and hence open up to smaller permutations or higher rates.

If we look at real-world constraints, we think assuming M ≤ 264 for any aĴacker is
reasonable. Going beyond this limit would imply an aĴacker that is able to present over
264 chosen input blocks to keyed duplex instances under aĴack and manage the outputs.
We will assume this limit in our choice of parameters in the remainder of this note. Gen-
eralizing to other values is however straightforward.

3 Reducing the number of rounds in the underlying permutation

In the design of Kђѐѐюј we have chosen for a large safety margin by taking a number of
rounds in Kђѐѐюј- f that is almost the double of what we estimate to be sufficient for the
absence of shortcut aĴacks more efficient than generic aĴacks.

In the published cryptanalysis of concrete primitives we observe that most primitives
offer a much higher resistance against aĴacks in keyed modes than in unkeyed modes.
The typical examples of aĴacks on an unkeyed hash function are the generation of colli-
sions and second pre-images. AĴacking a keyed mode ranges from key retrieval aĴacks
to distinguishers. Note that also determining a first pre-image can be seen as an aĴack on
a keyed mode, where the pre-image is the key. Examples that illustrate this difference in
resistance between keyed and unkeyed modes include:

– MD5 [24]: despite painstaking efforts there is liĴle progress inMD5 pre-image genera-
tion [25] whileMD5 collisions [26] have been generated that are practically exploitable

– Panama [15]: the Panama stream cipher is as yet unbroken while for the Panama hash
function collisions can be generated instantaneously [23,13]

– Kђѐѐюј: In the Kђѐѐюј crunchy crypto contest [9] collision challenges have been bro-
ken up to 4 rounds while pre-image challenges have been broken only up to 2 rounds.

Clearly, the situations for an adversary aĴacking an un-keyed instance of a sponge
function (e.g., used for collision-resistant hashing) and that of aĴacking a keyed instance

are very different. In a keyed instance, aĞer the key has been absorbed, the inner c bits
of the state are unknown to the aĴacker. In sponge-based MAC generation, during the
absorbing phase even the complete state is unknown to the aĴacker.

In the remainder of this paper we explore how the safety margin in Kђѐѐюј can be
relaxed for keyed applications in the light of these facts. We compare the performance
of these instances with Kђѐѐюј[], the Kђѐѐюј instance with default parameters r = 1024
and c = 576 and Kђѐѐюј[r=40, c=160]. Of course the same exercise can be conducted for
Quark, Photon, Spongent or in general any iterated permutation used in a keyed sponge
or duplex mode.

In this section we limit ourselves to applying the standard sponge and duplex con-
structions to round-reduced versions of Kђѐѐюј- f . Note that such round-reduced ver-
sions are covered by the Kђѐѐюј specifications in [10] and the Kђѐѐюј reference code [11].
To avoid confusion with Kђѐѐюј instances in which Kђѐѐюј- f has the nominal number of
rounds, we denote these primitives by the name KђѐѐѢѝ.

Definition 1. KђѐѐѢѝ- f [b, n] is a family of permutations parameterized by its width b and its
number of rounds n, where KђѐѐѢѝ- f [b, n] is identical to Kђѐѐюј- f [b] reduced to n rounds [10].
Similarly, KђѐѐѢѝ[r, c, n] is a sponge function or duplex object using KђѐѐѢѝ- f [r + c, n].

Aswedo notmodify the sponge or duplex constructions but just apply them to round-
reduced instances of Kђѐѐюј- f , the proven security boundswith respect to generic aĴacks
still apply. However, it may well be that this reduction of the number of rounds leads to
specific aĴacks breaking the security claims.

We do the exercise for two KђѐѐѢѝ- f permutation widths: 1600 and 200.

3.1 Using KђѐѐѢѝ- f [1600, n]

We target two security strength levels: 128 and 256. We will assume that the length k of
the secret keys corresponds to the security strength.

Consider a duplex instance with a target security strength of k = 128 bits. Assuming
the multiplicity is bound by M = 2a ≤ 264 results in a capacity of c = k + a = 192 bits,
leaving 1408 bits of rate. From our experiments related to trail search [10,14], we think that
the minimum weights for differential or linear trails over four rounds of Kђѐѐюј- f [1600]
is higher than 64. On the other hand, for higher-order differential cryptanalysis, cube
aĴacks and interpolation aĴacks, the algebraic degree of Kђѐѐюј- f increases only by a
factor two each round. If we seĴle for a degree of 1024, 10 rounds is the choice. Using
KђѐѐѢѝ[r = 1408, c = 192, n = 10] would give a speed-up with respect to Kђѐѐюј[] of
24/10 × 1408/1024 ≈ 3.3.

Targeting a security strength of k = 256 bits, a similar reasoning leads to a capacity
of c = k + a = 320 bits and 11 rounds, so KђѐѐѢѝ[r = 1280, c = 320, n = 11]. Here the
speed-up with respect to Kђѐѐюј[] becomes 24/11 × 1280/1024 ≈ 2.7.

3.2 Using KђѐѐѢѝ- f [200, n]

Thanks to their small state size, sponge and duplex instances based on Kђѐѐюј- f [200]
are well suited for use in resource-constrained environments. Its 25-byte state is actu-
ally smaller than AES-128, with its 16-byte data path and 16-byte round keys. On the
downside, this small state limits the achievable security strength.Wewill address security
strength levels 80 and 128 and compare their performance with Kђѐѐюј[r = 40, c = 160],
the instance with capacity 160 bits based on the Kђѐѐюј- f [200] permutation.

A target security strength of k = 80 bits combined with M ≤ 264 gives a capacity of
c = k + a = 144 bits and a rate of 56 bits. This relatively small rate value severely limits
degrees of freedom in differential aĴacks. As in the case of KђѐѐѢѝ- f [1600, n], our choice
of the number of rounds is mostly inspired by possible weaknesses due to the limited
algebraic degree. We think 9 rounds is on the safe side, so we propose KђѐѐѢѝ[r = 56, c =
144, n = 9]. Compared to Kђѐѐюј[r = 40, c = 160], the speedup is 18/9 × 56/40 ≈ 2.8.

A target security strength of k = 128 bits leads to a capacity of 192 bits and a rate
of only 8 bits. Thanks to the very small value of this rate, aĴackers engaged in cube and
similar aĴacks are expected to be forced applying multiple blocks. This relaxes the con-
straints on the number of rounds somewhat. On the other hand, clearly there must be
some number of rounds between the injection of differences and the appearance of their
effect at the output. Here we estimate that 6 rounds would be sufficient, so we propose
KђѐѐѢѝ[r = 8, c = 192, n = 6]. Still, the security strength of 128 bits comes at a high cost.
Compared to Kђѐѐюј[r = 40, c = 160], the loss of speed is 18/6 × 8/40 = 0.6.

4 Variants

In this sectionwe present two variants of the sponge and duplex constructions that do not
comply to the standard definitions. In defining these variants we take the liberty of vary-
ing the rate and the number of rounds of the underlying permutation across the different
phases. We are aware that variants and generalizations to the standard sponge definition
have already been proposed. For example, in [20] it was observed that taking different
rate/capacity pairs for the absorbing and squeezing phase can also have an effect on the
security strength. Other variants are proposed as part of the Parazoa generalization of
sponge functions [1], although not all are based on a permutation.

4.1 The donkeySponge construction

This mode is inspired by the Alred construction for MAC functions [16] and its instance
Pelican-MAC [17,18]. The Alred construction allows building efficient MAC functions
from block ciphers. Pelican-MAC is an instantiation based on AES, that is for long mes-
sages about 2.5 times faster than an AES-based CBC-MAC. Pelican-MAC takes as input
a MAC key and a message and operates in three phases. In a first phase a secret state is
initialized by applying AES to a 16-byte all-zero string with the MAC key as key. Then
16-bytemessage blocks are XORed into the secret state, interleaved by a permutation con-
sisting of 4 unkeyedAES rounds. AĞer applying all message blocks, the tag is obtained by
applying AES to the secret state, againwith theMAC key as key and (possibly) truncating
the result. For the security of the Alred construction it is crucial that an adversary shall
not be able to reconstruct the secret state or to generate inner collisions (pairs of partial
messages leading to the same state).

Clearly the second phase resembles the absorbing phase of a sponge, but with rate
equal to the width. In fact generalizing the Alred construction to support a b-bit permu-
tation rather than a block cipher does not require much imagination. We did the exercise
and call the result donkeySponge. We can summarize it as follows:

– The function takes as input a MAC key and a message and it returns a tag.
– The b-bit state is initialized with the MAC key and subject to ninit rounds of the per-
mutation resulting in the secret state. The number of rounds ninit must be chosen such
that all bits of the secret state depend on the MAC key.

– The b-bit blocks of themessage areXORed into the secret state, interleavedwith nabsorb-
round permutations. The number nabsorb must be chosen to make the success proba-
bility of generating inner collisions negligible.

– The tag is obtained by applying a nsqueeze-round permutation to the secret state and
truncating the result to ℓ bits. The number of rounds nsqueeze shall be high enough
to prevent an adversary in reconstructing the inner state from outputs observed for
chosen inputs. The number b− ℓmust be large enough to prevent state reconstruction
by exhaustive search, namely, b − ℓ ≥ k.

Note that during the absorbing phase the rate becomes equal to the permutation width.
This reduces the capacity to zero and precludes applying the proven generic security
strength bound of the sponge construction. Alred has a provable reduction of retrieval
of the MAC to the breaking of the block cipher. In donkeySponge the key can be read-
ily computed from the secret state, so this is a security feature that donkeySponge does
not have. On the other hand, Alred shares with donkeySponge that retrieval of the secret
state is catastrophic for the security. In Alred, reconstruction of this state requires gen-
erating inner collisions or breaking the underlying block cipher. In donkeySponge, the
former depends on the differential probability (DP) of differentials over nabsorb rounds.
For the laĴer, breaking the underlying block cipher is replaced by successfully applying a
chosen-input-difference aĴack on a truncated permutation with unknown input, whose
success depends on the DP of differentials over nsqueeze rounds.

From an efficiency point of view, Alred requires working memory for the data path
and the key schedule while donkeySponge only has a data path. For a given amount of
working memory available, in donkeySponge message differences diffuse over the full
memory, while in Alred the propagation of these differences is confined to the data path
part. Hence in principle donkeySponge makes beĴer use of available resources.

The donkeySponge construction is illustrated in Figure 3 and a formal specification is
given in Algorithm 1. It has the following parameters:

– f : permutation family parameterized by the number of rounds, where the n-round
member is denoted by f [n];

– ninit: number of rounds applied aĞer the key has been put in the state;
– nabsorb: number of rounds in between absorbing of message blocks;
– nsqueeze: number of rounds before squeezing of the tag (and in between squeeze oper-
ations if requested tag length exceeds rate);

– r: rate during squeezing.

We have done the exercise to see what parameter values would be reasonable for
a KђѐѐѢѝ-based instances of this and the result is the following. For instances calling
KђѐѐѢѝ- f [1600, n] with security strength 128 and 256 and calling KђѐѐѢѝ- f [200, n] with
security strength 128 and 80, we would propose the following values:

– ninit = 3: aĞer three rounds each state bit depends on some key bit, even for keys with
very weak entropy.

– nabsorb = 6: from our differential propagation experiments [10,14] we believe that
there are no 6-round trails with weight below 128 for Kђѐѐюј- f [200] and below 256
for Kђѐѐюј- f [1600].

– nsqueeze = 12: we take it as the double of nabsorb = 6 to accomodate for strength against
variants such as higher-order differential aĴacks.

For Kђѐѐюј- f [200] with target security strength 128 the length of the tag is limited to
72 bits. If a longer tag is desired, additional squeezing steps must be performed. For

Fig. 3. The donkey sponge construction

longmessages the KђѐѐѢѝ- f [1600, n]-based variants are a factor 24/6× 1600/1024 = 6.25
faster thanKђѐѐюј[] and theKђѐѐѢѝ- f [200, n]-based variants are a factor 18/6× 200/40 =
15 faster than Kђѐѐюј[r = 40, c = 160]. The fixed cost in the computation of a MAC is ex-
ecuting 15 rounds of KђѐѐѢѝ- f .

4.2 The monkeyDuplex construction

The authenticated encryption with associated data (AEAD) mode SѝќћєђWџюѝ based on
the duplex construction [7] only guarantees confidentiality if for the same key and dif-
ferent messages the associated data is unique. In other words, the associated data should
behave as a nonce. Violating this results in the encryption of different plaintexts with the
same keystream. However, it does not jeopardize the key.

In this section we propose a variant of the duplex construction called monkeyDuplex
whose security requires the uniqueness of a nonce. Thismakes thismodemore fragile and
we are aware that nonce uniqueness may not be imposed in all applications. However, if
it is possible, it results in a considerable security gain.

The principles underlying monkeyDuplex are the following:

– It is an object that upon creation is loaded with aMAC key and a nonce. Once created,
one can make duplexing calls to it, providing it with an input string σ and requesting
an output string Z. The output string depends on all previous input strings, the key
and the nonce.

– Upon creation, the b-bit state is initialized with the concatenation of the key and the
nonce and subject to ninit rounds. Informally speaking, the number of rounds ninit
must be chosen such that an active aĴacker has no advantage in combining outputs of
duplex objects loaded with different nonces. In other words, if the differential proper-
ties of f [ninit] are strong enough, state values of monkeyDuplex objects with different
nonce values can be considered independent. If so, state recovery by an aĴacker with
access to multiple objects does not give an advantage over state recovery from a single
object.

Algorithm 1 ёќћјђѦSѝќћєђ[f , ninit, nabsorb, nsqueeze, r]
Require: r < b

Interface: Z = donkeySponge(K, M, ℓ) with K, M and Z bitstrings, ℓ an integer, |K| < b and |Z| = ℓ
s = K||pad10∗[b](|K|)
s = f [ninit](s)

P = M||pad10∗[b](|M|)
for i = 0 to |P|b − 2 do

s = s ⊕ Pi
s = f [nabsorb](s)

end for
s = s ⊕ P|P|b−1

Z = empty string
while |Z| < ℓ do

s = f [nsqueeze](s)
Z = Z||⌊s⌋r

end while
return ⌊T⌋ℓ

– The duplexing calls are qualitatively the same as in the duplex construction. How-
ever, the number of rounds of the permutation, nduplex, can be reduced significantly
as compared to the plain duplex construction. We rely on the initialization phase and
its nonce to make differential aĴacks infeasible: an aĴacker has no control whatsoever
over state differences between pairs of monkeyDuplex objects. This limits his aĴack
path to state reconstruction.

The monkeyDuplex construction is illustrated in Figure 4 and a formal specification
is given in Algorithm 2. It has the following parameters:

– f : permutation family parameterized by the number of rounds, where the n-round
member is denoted by f [n];

– ℓkey: length of the key;
– ℓnonce: length of the nonce;
– ninit: number of rounds applied aĞer the key and nonce have been put in the state;
– nduplex: number of rounds in a duplex call;
– r: rate during duplexing.

The difficulty of state recovery grows with increasing values of nduplex and decreasing
values of r, while the efficiency is determined by the ratio r/nduplex. For achieving a given
efficieny one can vary these two parameters where increasing the rate r necessitates in-
creasing nduplex and vice versa. This results in a spectrum of possible choices with at the
two ends two particular approaches:

– Blockwise: r ≥ b/2. the problem of state recovery consists in solving a CICO prob-
lem for the permutation f [nduplex]. The choice of nduplex is based on estimating the
difficulty of solving this problem.

– Streaming: nduplex = 1. The problem of state recovery consists in determining the state
from the knowledge of a small part of the state for a number nunicity of subsequent
rounds. The difficulty of solving this problem depends on nunicity and the nature of
the round function. We have nunicity = ⌊b/r⌋. The value of r can hence be derived
from the minimum value of nunicity for which the state recovery problem is estimated
to have expected workload above 2k.

Fig. 4. The monkey duplex construction

Algorithm 2 њќћјђѦDѢѝљђѥ[f , ℓkey, ℓnonce, ninit, nduplex, r]
Require: r < b
Require: ℓkey + ℓnonce ≤ b − 1

Interface: D.initialize(K,nonce) with |K| = ℓkey and |nonce| = ℓnonce
s = K||nonce||pad10∗[b](ℓkey + ℓnonce)
s = f [ninit](s)

Interface: Z = D.duplexing(σ, ℓ) with Z and σ bitstrings, integer ℓ satisfying 0 ≤ ℓ ≤ r and |σ| ≤ r − 2
and |Z| = ℓ
P = σ||pad10∗1[r](|σ|)||0b−r

s = s ⊕ P
s = f [nduplex](s)
return ⌊s⌋ℓ

We have done the exercise to see what parameter values would be reasonable for a
KђѐѐѢѝ-based instances. We denote these instances by the name Kђѡїђ. The result is the
following. For all instanceswepropose ninit = 12: this ismotivated by the same arguments
as the choice of nsqueeze in donkeySponge. In the choice of r and nduplex we have blockwise
and streaming instances.

For the streaming instances (nduplex = 1):

– b = 1600, security strength 256: r = 128 yielding nunicity = 12. This is a factor 24 ×
128/1024 = 3 faster than Kђѐѐюј[].

– b = 200, security strength 80: r = 16 yielding nunicity = 12. This is a factor 18× 16/40 =
7.2 faster than Kђѐѐюј[r = 40, c = 160].

We only propose a blockwise instance for b = 1600. A value of b = 200 does not allow
taking r > b/2 and at the same time supporting a security strength of 80 and amultiplicity
of 264. We have:

– b = 1600, security strength 256: r = 1280 and nduplex = 8. This is a factor 24/8 ×
1280/1024 = 3.75 faster than Kђѐѐюј[].

The monkeyDuplex construction can be used in different modes. The two most im-
portant ones are:

– keystream generation, where all duplexing calls are blank, i.e. with σ = empty string;
– authenticated encryption, similar to SѝќћєђWџюѝ [7].

5 Conclusions

We have discussed ways to speed up keyed modes based of on permutations. These are
based on the following observations:

– Constructions can reach a higher security strength level with respect to generic aĴack
in keyed modes than in unkeyed modes.

– Concrete primitives reach a higher security strength against aĴacks in keyed used
cases than in un-keyed use cases.

We have proposed two new constructions that provide a speed advantage over the stan-
dard sponge and duplex constructions at the expense of a reduction of generality. The
donkeySponge construction is basically a keyed sponge dedicated to MAC computation.
The monkeyDuplex construction is a keyed duplex construction that depends on nonces
for its cryptographic security and can be used for efficient keystream generation and au-
thenticated encryption. We have illustrated the potential of our proposals with instances
based on reduced-round versions of Kђѐѐюј- f [1600] and Kђѐѐюј- f [200], but they can be
applied to any iterated permutation.

References

1. E. Andreeva, B. Mennink, and B. Preneel, The parazoa family: generalizing the sponge hash functions, Int. J.
Inf. Sec. 11 (2012), no. 3, 149–165.

2. J.-P. Aumasson, L. Henzen, W. Meier, and M. Naya-Plasencia, Quark: A lightweight hash, in Mangard and
Standaert [21], pp. 1–15.

3. D. Bernstein, The Salsa20 family of stream ciphers, The eSTREAMFinalists (M. Robshaw andO. Billet, eds.),
Lecture Notes in Computer Science, vol. 4986, Springer, 2008, pp. 84–97.

4. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, On the indifferentiability of the sponge construction,
Advances in Cryptology – Eurocrypt 2008 (N. P. Smart, ed.), Lecture Notes in Computer Science, vol.
4965, Springer, 2008, http://sponge.noekeon.org/, pp. 181–197.

5. , Sponge-based pseudo-random number generators, in Mangard and Standaert [21], pp. 33–47.
6. , Cryptographic sponge functions, January 2011, http://sponge.noekeon.org/.
7. , Duplexing the sponge: single-pass authenticated encryption and other applications, Selected Areas in

Cryptography (SAC), 2011.
8. , On the security of the keyed sponge construction, Symmetric Key Encryption Workshop (SKEW),

February 2011.
9. , Kђѐѐюј crunchy crypto collision and pre-image contest, 2011, http://keccak.noekeon.org/

crunchy_contest.html.
10. , The Kђѐѐюј reference, January 2011, http://keccak.noekeon.org/.
11. , Reference and optimized implementations of Kђѐѐюј, 2012, http://keccak.noekeon.org/.
12. A. Bogdanov, M. Knezevic, G. Leander, D. Toz, K. Varıcı, and I. Verbauwhede, SPONGENT: A lightweight

hash function, CHES (B. Preneel and T. Takagi, eds.), Lecture Notes in Computer Science, vol. 6917,
Springer, 2011, pp. 312–325.

13. J. Daemen andG. VanAssche, Producing collisions for PANAMA, instantaneously, Fast SoĞware Encryption
2007 (A. Biryukov, ed.), LNCS, Springer-Verlag, 2007, pp. 1–18.

14. , Differential propagation analysis of Kђѐѐюј, Fast SoĞware Encryption 2012, 2012.
15. J. Daemen and C. S. K. Clapp, Fast hashing and stream encryption with PANAMA, Fast SoĞware Encryption

1998 (S. Vaudenay, ed.), LNCS, no. 1372, Springer-Verlag, 1998, pp. 60–74.
16. J. Daemen and V. Rĳmen, A new MAC construction ALRED and a specific instance ALPHA-MAC, Fast SoĞ-

ware Encryption (H. Gilbert and H. Handschuh, eds.), Lecture Notes in Computer Science, vol. 3557,
Springer, 2005, pp. 1–17.

17. , The Pelican MAC function, IACR Cryptology ePrint Archive 2005 (2005), 8.
18. , Refinements of the ALRED construction and MAC security claims, IET information security 4 (2010),

149–157.

http://sponge.noekeon.org/
http://sponge.noekeon.org/
http://keccak.noekeon.org/crunchy_contest.html
http://keccak.noekeon.org/crunchy_contest.html
http://keccak.noekeon.org/
http://keccak.noekeon.org/

19. P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger, M. Schläffer, and S. S. Thom-
sen, Grøstl – a SHA-3 candidate, Submission to NIST (round 3), 2011.

20. J. Guo, T. Peyrin, andA. Poschmann,The PHOTON family of lightweight hash functions, Crypto (P. Rogaway
and R. Safavi-Naini, eds.), Lecture Notes in Computer Science, vol. 6841, Springer, 2011, pp. 222–239.

21. S. Mangard and F.-X. Standaert (eds.), Cryptographic hardware and embedded systems, CHES 2010, 12th in-
ternational workshop, Santa Barbara, CA, USA, August 17-20, 2010, Lecture Notes in Computer Science, vol.
6225, Springer, 2010.

22. NIST, NIST special publication 800-57, recommendation for key management (revised), March 2007.
23. V. Rĳmen, B. Van Rompay, B. Preneel, and J. Vandewalle, Producing collisions for PANAMA, Fast SoĞware

Encryption 2001 (M. Matsui, ed.), LNCS, no. 2355, Springer-Verlag, 2002, pp. 37–51.
24. R. Rivest, The MD5 message-digest algorithm, Internet Request for Comments, RFC 1321, April 1992.
25. Y. Sasaki andK. Aoki, Finding preimages in full MD5 faster than exhaustive search, Advances in Cryptology –

Eurocrypt 2009 (A. Joux, ed.), Lecture Notes in Computer Science, vol. 5479, Springer, 2009, pp. 134–152.
26. M. Stevens, A. Sotirov, J. Appelbaum, A. Lenstra, D. Molnar, D. Osvik, and B. de Weger, Short chosen-

prefix collisions for MD5 and the creation of a rogue CA certificate, Crypto (S. Halevi, ed.), Lecture Notes in
Computer Science, vol. 5677, Springer, 2009, pp. 55–69.

27. H. Wu, The hash function JH, Submission to NIST (round 3), 2011.

	Permutation-based encryption, authentication and authenticated encryption

