
On alignment in Kђѐѐюј

Guido Bertoni1, Joan Daemen1, Michaël Peeters2, and Gilles Van Assche1

1 STMicroelectronics
2 NXP Semiconductors

Abstract. In this paper we investigate the ability to predict the propagation of truncated dif-
ferences and linear masks in cryptographic primitives. We speak of strong alignment if this
propagation is predictable and of weak alignment if the propagation is hard to predict. We
show the relevance of alignment with respect to some types of cryptanalysis including the
rebound aĴack. We give insight in the alignment in the NIST SHA-3 hash function contest
finalist Kђѐѐюј by reporting on a number of experiments we conducted. It appears that the
propagation of differences or linear masks does not respect the row boundaries, hence Kђѐѐюј
has weak alignment.

Keywords: Kђѐѐюј, alignment, truncated differentials, rebound aĴack

1 Introduction

In this paper we study a property of cryptographic round functions that plays an im-
portant role in its sensitivity to truncated differential cryptanalysis and rebound aĴacks:
alignment. More particularly, we investigate alignment for the NIST SHA-3 hash function
contest finalist Kђѐѐюј [2].

Truncated differential cryptanalysis (DC) was introduced in [11] as a powerful vari-
ant of classical DC for aĴacking block ciphers. Techniques from truncated DC play an
important role in rebound aĴacks, a powerful method for aĴacking hash function com-
ponents [13]. In truncated DC one divides the function input, output and intermediate
computation values in sub-blocks, typically of equal size (e.g. bytes). Whereas in classical
DC one studies propagation of differences that are fully specified, in truncated DC one
only specifies whether a sub-block is active (has a difference) or is passive (has no differ-
ence). In case of sub-blocks of n bits, the range of possible values of an active sub-block
of a difference covers all 2n − 1 non-zero sub-block values. A truncated difference is fully
determined by the activity paĴern indicating for each sub-block whether it is active or not.

We first introduce alignment by contrasting activity paĴern propagation in Kђѐѐюј
with that in RӒћёюђљ(AES) [4,16]. Both designs aĴempt to avoid narrow trails, but their
approach in terms of alignment differ significantly. This is followed by a discussion on
the relevance of alignment for cryptanalysis. Finally, we report on our investigation on
alignment in Kђѐѐюј. The outcome of our experiments suggest that the round function of
Kђѐѐюј- f has in general weak alignment. For the cases where there is no weak alignment,
this is due to saturationwhere the vastmajority of differences/masks propagate to activity
paĴerns that cover the complete state.

2 Alignment in RӒћёюђљ

We assume that most readers are aware of the general structure of RӒћёюђљ and refer
those that are not to [4,16] for a description. The round function of RӒћёюђљ consists of
four steps. Each of these steps treats a state as an array of bytes. Therefore it makes sense

to take bytes for the sub-blocks. Activity paĴerns have the same shape as a RӒћёюђљ state,
where for each byte position the (binary) activity is specified.

Consider an activity paĴern with a single active byte at the input of a round and
see how it propagates through the four steps of a RӒћёюђљ round: SubBytes, ShiftRows,
MixColumns and AddRoundKey. The step SubBytes applies an invertible S-box to the state
bytes separately and hence leaves the activity paĴern invariant. The byte transpositions
ShiftRowsmoves the active byte to another position in the same row (if in row 0, it leaves
its position intact). The mixing layer MixColumns operates on the columns independently
and thanks to the fact that it has branch number 5, converts the column with a single ac-
tive byte to a column with 4 active bytes. Finally, the step AddRoundKey leaves the activity
paĴern invariant. So an activity paĴern with a single active byte at the input of the round
function fully determines the activity paĴern at the output of the round function. Simi-
larly, one can show that any difference at the output of the round function with a single
active byte fully determines the activity paĴern of the difference at the input.

We express the fact that this difference propagation nicely follows the byte boundaries
by saying that the RӒћёюђљ round function has strong alignment with respect to bytes.

Four rounds of AES (RӒћёюђљ restricted to a block size of 16 bytes) can be represented
as a first layer of four 32-bit super S-boxes [5], a diffusion mapping and a second layer of
super S-boxes. For this representation one can take as sub-blocks 32-bit blocks and again
a single active block at the input implies that all four blocks are active at the output, and
vice versa.

In fact, these strong alignment properties are a direct consequence of the very design
choices that have enabled the crystal clear proofs on lower bounds for the weight of four-
round trails (both differential and linear) in RӒћёюђљ [4].

The examples given represent truncated differentials with probability 1, i.e., that are
deterministic. One can associate a differential probability (DP) with a truncated differen-
tial (a, b) over a function. This is simply for all input pairs that have an activity paĴern a,
the proportion of output pairs with activity paĴern b. Similarly, one can associate a DP
with a truncated differential trail. The weight of a truncated differential is minus the bi-
nary log of its DP. The weight of a truncated differential trail is the sum of the weights of
its single-round differentials.

In the steps of the RӒћёюђљ round function, a truncated differential (a, b) over Sub-
Bytes has DP equal to 1 if a = b and 0 otherwise. The same goes for the round key
addition AddRoundKey. For the byte transposition ShiftRows we have a DP equal to 1 if
b = ShiftRows(a) and 0 otherwise. So for these three steps, activity paĴern propagation
is deterministic. The mixing layer MixColumns is an exception to this and has propagation
probabilities ranging from 1 for an input with at most one active byte per column down
to 255−n with n the RӒћёюђљ block size in bytes, for an input with all bytes active and an
output with exactly one active byte per column.Moreover, the DP of a truncated differen-
tial depends on the direction. For example, a differential from a single active byte to four
active bytes has DP equal to 1 in the forward direction. In the backward direction, it has
DP 255−3. This is linked to the fact that the number of pairs with four active bytes is 2553

times larger than the number of pairs with a single active byte.
As opposed to single-round classical differentials, the DP is not determined by the

nonlinear step SubBytes but rather by the mixing layer MixColumns. In truncated single-
round differentials the nonlinear step SubBytes merely defines the state partitioning in
sub-block and the activity propagation probabilities are fully determined by the linear
layer AddRoundKey ◦ MixColumns ◦ ShiftRows.

2

χ

Fig. 1. Propagation of a difference in a row of Kђѐѐюј- f [200] at the input of χ. The set
of possible output differences is an affine space. The row-activity paĴern is preserved
by χ. The state is represented with bits as squares, with positions x along the horizontal
axis, from x = −2 (leĞ) to x = 2 (right), with positions y along the vertical axis, from
x = −2 (boĴom) to x = 2 (top), and with positions z in projective perspective, from z = 0
(foreground) to z = 2ℓ − 1 (background). A red square means an active bit.

3 Alignment in Kђѐѐюј

3.1 Short description of Kђѐѐюј

We give here a short description of Kђѐѐюј, relevant in the context of this paper. For more
details and backgroundwe refer the reader to [2]. Kђѐѐюј is a sponge function family [2] that
makes use of a set of underlying b-bit permutations called Kђѐѐюј- f . There are in total 7
such permutations with different widths b: 25, 50, 100, 200, 400, 800 and 1600. Each of the
Kђѐѐюј- f permutations is iterated: it consists of the iterated application of a simple round
function. The only difference between the rounds is the application of a round constant.

The round function operates on a state in the form of a three-dimensional bit array
with dimensions 5 × 5 × 2ℓ. It can be seen as 2ℓ slices of each 5 rows and 5 columns or as
a two-dimensional array of 5 × 5 lanes of each 2ℓ bits. A bit position can be specified by
three coordinates x, y and z where the former two range from 0 to 4 and the laĴer from
0 to 2ℓ − 1. The position of a row is determined by two coordinates y and z, that of a
column by x and z and that of a lane by x and y. The position of a slice is determined by
the z-coordinate only.

The round function of Kђѐѐюј- f consists of 5 invertible steps:

θ Linear mixing layer that adds to each bit of the state in position (x, y, z) the parity of
bits in columns (x, z + 1) and (x − 1, z − 1).

ρ Bit transposition that shiĞs the bits in each lane along the z-axis with a particular offset
cρ(x, y) that depends on the lane position: it shiĞs bit in position (x, y, z) to position
(x, y, z + cρ(x, y)).

π Bit transposition that moves the lanes around within the 5 × 5 array: it moves bit in
position (x, y, z) to position (X, Y, z) with (X, Y)T = M(x, y)T with M a fixed 2 × 2
matrix.

χ Nonlinear layer that operates on the rows separately. It complements bit in position
(x, y, z) if the bits in positions (x + 1, y, z) and (x + 2, y, z) exhibit the paĴern 01.

ι Addition of round constant to the lane in position (0, 0).

In this description x, y and z indices must be taken modulo 5, 5 and 2ℓ respectively,
and addition and multiplication of bits is in GF(2). With the exception of ι, all steps are
translation-invariant in the direction of the z-axis.

3

θ

ρ, π

θ

ρ, π

θ

ρ, π

θ

ρ, π

θ

ρ, π

Fig. 2.On top, from leĞ to right, the basis elements ei of differences in row (y, z) = (0, 0) of
Kђѐѐюј- f [200]; in the middle, the effect of θ; and at the boĴom, the corresponding values
L(ei). The active rows are grayed.

3.2 Alignment along the row boundaries

The nonlinear step χ can be seen as the parallel application of 5-bit S-boxes on the rows
of the state. Therefore it seems natural to consider the rows as sub-blocks. A row-activity
paĴern consists of 5 × 2ℓ bits. The steps χ and ι leave a row-activity paĴerns invariant as
they operate on the rows independently and are invertible (see also Figure 1). So we just
have to study the effect of θ, ρ and π on the activity paĴerns. Note that these are all three
linear functions and two of them are mere bit transpositions. We denote π ◦ ρ ◦ θ by L: the
effect of a round on an activity paĴern is that of L.

Consider now an activity paĴern at the input of a round with a single active row in
position (y, z) = (0, 0) and see towhich activity paĴerns thismay propagate at the output.
This activity paĴern covers a set of 31 difference paĴerns. In the remainder of this section
we will denote this set by A and use A∗ for A augmented with the all-zero paĴern. The
set A∗ can be described as a vector space over GF(2) with a basis ⟨ei⟩ of 5 elements. The
elements of A∗ can then be expressed as ∑i aiei with ai ∈ GF(2). In the simplest possible
basis, ei is the vector with the bit in position (i, 0, 0) equal to 1 and all other bits equal to
0.

Thanks to its linearity, we can now describe the effect of L on A∗ as its effect on the
basis elements ei. Applying θ to a base element consists of seĴing 10 bits in two additional
columns to active, leading to a state with 11 active bits in total. The step ρ shiĞs these 11
active bits to different slices and finally π moves these active bits around within those
slices. This is illustrated in Figure 2.

For large values of 2ℓ we expect the active bits of L(ei) to be in 11 different rows.
Additionally, as there are many rows, we expect there to be liĴle overlap of active rows
between these base vectors. It is therefore likely that the elements L(ei) generate a space

4

where no two elements have the same activity paĴern. In other words, the elements of A∗

would lead to 32 different activity paĴerns. OmiĴing the zero vector gives 31.
If ℓ = 0 there is only a single slice and ρ is the identity function. Due to the fact that

aĞer θ all 5 rows in this single slice are active and that π is a mere bit transposition, we
expect most elements of L(A) to have no passive rows. This implies that the 31 nonzero
elements of L(A) would have the same activity paĴern.

For values of 2ℓ in between it is harder to predict what will happen, so we determined
the distributions of L(A) experimentally. Thanks to the fact that θ, ρ and π are translation-
invariant in the direction of the z-axis [2], the results for a row in position (y, 0) are also
valid for all rows in position (y, z) with z ̸= 0. We list the number of possible activity
paĴerns at the output in Table 1.

lane size 2ℓ y = 0 y = 1 y = 2 y = 3 y = 4
1 1 1 1 1 1
2 11 10 11 9 12
4 26 28 29 27 28
8 31 31 31 31 31
16 31 31 31 31 31
32 31 31 31 31 31
64 31 31 31 31 31

Table 1.Number of possible row activity paĴerns at output of a Kђѐѐюј- f round for input
differences with a single active row

Clearly, for width values above 4, the 31 input differences with a single active row lead
to 31 different output activity paĴerns. As opposed to RӒћёюђљ, the difference propaga-
tion does not respect the row boundaries andwe speak ofweak alignment. For the widths 1
and 2, we observe a saturation effect due to the high average diffusion of θ and the limited
number of rows in the state. It turns out that L maps most input differences with a single
active row to differences with all rows active.

4 The relevance of alignment

In this section we explain how alignment plays an important role in the sensitivity of a
round function to rebound aĴacks [13], the grouping of multiple trails in differentials and
correlations [5] and the existence of plateau-like trails [6].

4.1 Rebound aĴacks

In this section we try to capture the general idea of rebound aĴacks relevant in the context
of this paper. We do not have the ambition to provide its full bibliography and limit our
citations to some interesting papers to illustrate our points and refer the interested reader
to the ECRYPT II SHA-3 Zoo [7] for an excellent source of references.

Rebound aĴacks are a technique of finding pairs that follow truncated differential
trails (also called right pairs of characteristics) that typically have few active bits at the in-
put and at the output. It applies to use cases where the aĴacker has full knowledge of,
and partial control over, the input to the function. This function is typically a compres-
sion function of a hash function, an iterated permutation or a block cipher. Rebound at-
tacks are oĞen used as certificational distinguishers for compression functions and block

5

ciphers [13,12,8,15,10]. However, in the case of hash functions they are sometimes used
to construct actual aĴacks [14,9].

In the simplest version of the rebound aĴack, pairs are constructed in two phases. In
a first phase, called inbound, available degrees of freedom are exploited to efficiently con-
struct candidates that satisfy conditions imposed by themiddle part of the truncated trail,
that is typically heavy, i.e., imposes many conditions. In a second phase, called outbound
phase, candidate pairs are computed forwards and backwards until a pair is found that
follows the full truncated trail. Many variants and optimizations have been published in
recent years, such as rebound aĴacks that combine multiple inbound phases.

To the best of our knowledge, all published rebound aĴacks making use of truncated
differential trails are on cryptographic primitives with strong alignment. Cryptographic
primitives with strong alignment tend to have strong upper bounds for the DP of dif-
ferential trails. For example in RӒћёюђљ there are no four-round differential trails with
probability above 2−150. It follows that for a fixed key, the expected number of pairs fol-
lowing such a trail is 2−23. However, due to the strong alignment, many such trails cluster
in truncated differentials followed by many pairs. When there is weak alignment, differ-
ential trails tend to diverge and it is highly unlikely that exploitable truncated differentials
can be constructed.

4.2 Clustering of differential trails

Alignment plays a role in the way differential trails cluster in differentials. The differen-
tial probability (DP) of differentials over multiple rounds of a block cipher and iterated
permutations is oĞen (silently) approximated by that of single differential trails. If differ-
ential trails tend to cluster in differentials, this may result in a strong underestimation,
hence a reliable estimation of the DP of differentials should take into account this clus-
tering effect. For a high-level description of differentials, trails and their DP in iterated
permutations we refer the interested reader to [1, Section “Differential Cryptanalysis”].

Consider the case of two-round trails and differentials. A two-round trail is specified
by the differences b′i at the input of three consecutive rounds: (b

′
0, b′1, b′2). A differential is

specified by the initial difference b′0 and a final difference b′2 only. The DP of the differ-
ential (b′0, b′2) is the sum of the differential probabilities of all matching differential trails
(b′0, b′1, b′2):

DP(b′0, b′2) = ∑
b′1

DP(b′0, b′1, b′2) .

Clustering of trails occurs if for a given differential (b′0, b′2)when there are many values of
b′1 withDP(b′0, b′1, b′2) > 0. For DP(b′0, b′1, b′2) to be non-zero, both single-round differentials
(b′0, b′1) and (b′1, b′2) must have a non-zero DP. A Kђѐѐюј- f round is composed of a linear
step L followed by a nonlinear step χ. If we denote by a′i the differences at the input of χ
of round i, we have a′i+1 = L(b′i):

b′0
L⇒ a′1

χ⇒ b′1
L⇒ a′2

χ⇒ b′2 (1)

We will denote the row activity paĴern of a difference a′ by act(a′). For the differ-
ential (b′0, b′1) this requires act(b′1) = act(a′1). For the differential (b′1, b′2) this requires
act(L(b′1)) = act(a′2). Hence, for all contributing trails, b′1 must satisfy both requirements.
If for the differences b′1 with activity paĴern act(a′1) the activity paĴerns act(L(b′1)) are
all different, the two-round differential (b′0, b′2) has at most a single differential trail with
non-zero DP. It follows that weak alignment prevents the clustering of differential trails
in two-round differentials.

6

Strong alignment on the other hand does not necessarily lead to massive clustering
of differential trails in two-round differentials. Here the properties of the S-boxes also
play a role and investigating it requires dedicated analysis. This was done for two-round
differentials in RӒћёюђљ[5].

4.3 Clustering of linear trails

Similarly, alignment plays a role in the way linear trails cluster in correlations. Correla-
tions over multiple rounds of a block cipher or an iterated permutation are oĞen (silently)
approximated by that of single linear trails. This is illustrated by the usage of the term lin-
ear approximation for both concepts in many papers. The truth is that the value of a multi-
round correlation in an iterated permutation is the sum of the correlation contributions
of all compatible linear trails [3]. These correlation contributions have a sign and when
they are added the value of the correlation may indeed be smaller than that of the trails
contributing to it. If linear trails tend to cluster in multi-round correlations, some corre-
lations will be higher than expected and some will be lower. Thus the correlation values
may diverge significantly from the ones predicted by considering single linear trails and a
reliable estimation of the multi-round correlations should therefore take into account this
clustering effect. For a high-level description of correlations and linear trails in iterated
permutations we refer the interested reader to [1, Section “Linear Cryptanalysis”].

A two-round trail is specified by themasks vi at the output of three consecutive rounds:
(v0, v1, v2). A two-round correlation is specified by an output mask v0 and an input mask
v2 only. The correlation of (v0, v2) is the sum of the (signed) correlation contributions of
all matching linear trails (v0, v1, v2):

C(v0, v2) = ∑
v1

C(v0, v1, v2) .

Clustering of trails occurs if for a given correlation (v0, v2) there aremanyvalues of v1 with
C(v0, v1, v2) ̸= 0. For C(v0, v1, v2) to be non-zero, both single-round correlations C(v0, v1)
and C(v1, v2) must be non-zero. If we denote by ui the mask at the input of χ of round i,
the trail can be depicted as follows:

v2
L⇒ u1

χ⇒ v1
L⇒ u0

χ⇒ v0 (2)

we have vi+1 = LT(ui), with the T suffix denoting the transpose, or equivalently ui =
L−T(vi+1) with the −T suffix denoting the inverse of the transpose. This follows directly
from the expression of parities using transposes (denoting L as a matrix multiplication):

⟨u, a⟩ = uTa = uTLL−1a = (LTu)
T

L−1a = ⟨LTu, L−1a⟩.

For the correlation C(v0, v1) this results in the requirement act(L−T(v1)) = act(u0). For
the correlation (v1, v2) this results in the requirement act(v1) = act(u1). Hence, for all
contributing trails, v1 must satisfy both requirements. If for the masks u0 with activity
paĴern act(v0), the activity paĴerns act(LT(u0)) are all different, the two-round correla-
tion C(v0, v2) has at most a single linear trail with non-zero correlation. It follows that
weak alignment prevents the clustering of linear trails in two-round correlations.

4.4 Plateau trails

Adifferential over an S-box imposes conditions on the bits ofmembers of pairs that satisfy
it. Each condition consists of an equation over GF(2) that the bits must satisfy. The pairs

7

that follow a trail satisfy the conditions imposed by all its active S-boxes. Consider now
a two-round trail (b′0, b′1, b′2). The active S-boxes in the differential (a′1, b′1) over the first
non-linear layer impose conditions on b1 and the active S-boxes in the differential (a′2, b′2)
impose conditions on a2. The equations in the bits of a2 can simply be propagated to b1 by
substitution using a2 = L(b1) + p where p is a round key or round constants, and a2 (resp.
b1) is the absolute value corresponding to a′2 (resp. b′1).

Assume now the equations in a2 are affine and can be expressed as uTa2 = c. If we
express the linear step L as the multiplication by a matrix M, the substitution looks like
this: uT(Mb1 + p) = c. If we denote MTu by v and Mp+ c by d, this gives vTb1 = d. Clearly,
u and v are linear masks and the propagation of u to v is governed by LT. In the presence
of strong alignment, masks u in a single S-box propagate tomasks vwith the same activity
paĴern. This may lead to the situation that the number of equations becomes larger than
the number of bit positions occurring in the masks, leading to an overdetermined set
of linear equations. For certain values of the round key (or round constant) it will have
solutions and for others it will not. In the laĴer case, the number of pairs following the
trail (or equivalently, its DP) is larger than 2w with w the weight of the trail. Moreover, if
the equations are affine, the number of solutions is a power of two. This effect was called
plateau trails and investigated for the case of RӒћёюђљ in [6].

For plateau trails, the average of the DP over all round key values is 2−w with w the
weight of the trail. However, the DP is 2w−n for an affine subspace of the round key space
containing a fraction 2−n of the keys and 0 for keys outside that subspace. It turns out that
in RӒћёюђљ the vast majority of trails are plateau trails with n > 0. For those trails, 2−w is
not a reliable estimate for the DP for fixed keys.

An iterated permutation such as Kђѐѐюј- f has no round keys and a hypothetical
plateau trail would have either no pairs or more pairs than suggested by 2−w. When con-
sidering trails with weight above the width of the permutation, clearly 2−w cannot be cor-
rect as the DP must be an integer multiple of 21−b due to the fact that the total number of
pairs is 2b−1. Trailswith only a fewpairs appear to be of liĴle use to the cryptanalyst. How-
ever, when the plateau trail effect occurs for low-weight trails, thismay be exploitable due
to the fact that finding pairs following the trail would consume less degrees of freedom
than its weight w suggests.

Let us now take a look at two-round trails in Kђѐѐюј- f . Each equation (not necessarily
linear) due to the active S-boxes in the first nonlinear layer involve bits of a single row
of b1 only. Each equation due to the active S-boxes in the second nonlinear layer can be
expressed by a linear mask that is active in a single row. When LT has weak alignment,
the propagation of the equation masks from a2 to b1 results in masks that have distinct
row activity paĴerns. If all these masks have at least two active rows, it is very unlikely
that the combined set of equations is overdetermined thanks to the mere number of bits
involved. It follows that the row-alignment of LT plays an important role in the occurrence
of plateau-like trails.

5 A search optimization technique

When investigating these distributions, we noticed an interesting property of bases and
used it to optimize our programs. This property is not specific for Kђѐѐюј and can be
applied for propagation of vector spaces through any linear function L and for any sub-
block partitioning.

8

Lemma 1. Let ⟨ei⟩ be a basis for a set A∗ containing an element ej for which there exists a sub-
block position in which L(ej) is active and ∀i ̸= j L(ei) is passive. Then for any pair of elements
a = ∑i aiei and b = ∑i biei with aj ̸= bj, L(a) and L(b) have different sub-block activity paĴerns.

Proof. Say aj = 1 and bj = 0. Then L(a) has an active sub-block at the position where
among the base vectors only ej is active and L(b) has a passive sub-block at that position.
It follows that L(a) and L(b) have different slice activity paĴerns. ⊓⊔

We call ej an activity-spliĴing base element for a given L and type of sub-blocks. It par-
titions the elements of L(A∗) in two equally-sized subsets with non-overlapping activity
paĴerns. If for a given vector space A∗ a basis can be constructed with n activity-spliĴing
elements, then the elements of L(A∗) are distributed over at least 2n different activity
paĴerns. If n is the dimension of A∗, all activity paĴerns are different.

A technique for constructing activity-spliĴing base elements from an existing base is
the following. Let Ea be the set of base elements for which L(ei) has an active sub-block in
a given position. If for all base elements in Ea the value of L(ei) restricted to this sub-block
is the same, then an activity-spliĴing element can be generated: it suffices to choose one
of the base elements in Ea and adapt the basis by XORing this base element to the other
base elements in Ea. The chosen base element is now an activity-spliĴing vector. This can
be repeated for all sub-block positions.

6 Investigations on alignment in Kђѐѐюј

In Section 3.2 we already reported on the activity paĴerns at row level of differences at the
output of a Kђѐѐюј- f rounddue to a single-row input difference at its input. In this section
we report on a number of additional experiments we did to gain a beĴer understanding
on alignment in the Kђѐѐюј- f round function.

First, we also investigated slice activity paĴerns. The lane transposition step π oper-
ates on the slices independently. Moreover, as the nonlinear step χ operates on the rows
independently, it also operates on the slices independently. So it seems natural to consider
the slices as sub-blocks and investigate the distribution of the activity paĴerns resulting
from the 225 − 1 differences or masks with a single active slice. A slice-activity paĴern
consists of a lane of 2ℓ bits.

Second, we have treated the special case of the so-called kernel. The mixing layer θ and
its transpose θT have the property that they behave like the identity for inputs that have
an even number of active bits in each column. The Kђѐѐюј designers have called the set
of such states the (column parity) kernel [2]. For in-kernel input differences, L behaves as
a bit transposition and so the round function has weak diffusion (see also Figure 3). For
that reason we also report on the results for the in-kernel sub-space of the states with a
single active slice. This subspace has dimension 20. One can easily construct a basis for
this subspace in the followingway. Each base element has one active column and there are
4 base elements per column. Each of four base elements for column i have two active bits:
one in position (x, y, z) = (i, 0, 0) and one in position (x, y, z) = (i, j, 0), where j ranges
from 1 to 4.

We applied sets of differences and (linear) masks at one side of the round and inves-
tigated the distribution of the sub-block activity paĴerns at the other side of the round.
More particularly, we covered all 24 combinations of the following choices:

– Propagation type: differences (DC) or masks (LC)
– Propagation direction: the round function or its inverse

9

θ

ρ, π

Fig. 3. Example of propagation of a difference lying in the column parity kernel of
Kђѐѐюј- f [200].

– Applied range: single-row, single-slice, in-kernel single-slice
– Sub-blocks determining resulting activity: rows and slices

We report on all these except the case of slice-activity paĴerns of single-row differences
or masks. This would result in 4 more tables and we feel they would bring very liĴle
additional insight.

6.1 Distribution characteristics

In Table 1 the numbers in rows with permutation width 2ℓ equal to 2 and 4, just counting
the cardinality of the activity paĴerns may lead to incorrect conclusions if not interpreted
with care. For example, the number 11 for 2ℓ = 2 and for row y = 0 means that the
31 elements L(A) are distributed over 11 activity paĴerns. One may expect there to be
about 3 elements per activity paĴern. However, it turns out that 21 of the elements have
the same activity paĴern and the remaining 10 each have a different activity paĴern. To
beĴer capture this we introduce an additional quantifier, the activity entropy. It expresses
the uncertainty on the activity paĴern of L(a) for a randomly chosen from A.

Definition 1. Let Pr(z|A) be the probability that L(a) has activity paĴern z if a is chosen ran-
domly from A. Then the activity entropy for a given set A and a mapping L with respect to a given
sub-block partitioning is given by

h = −∑
z

Pr(z|A) log2 Pr(z|A) .

The activity entropy ranges from 0 to log2 #A. A value of 0 means that the input activity
paĴern fully determines the output activity paĴern, the maximum value occurs when the
elements of L(A) have all different activity paĴerns. Low entropy values imply strong
alignment and high entropy values weak alignment.

10

Additionally, in our experiments we noticed a saturation effect: if there is an activity
paĴern to which most input differences are mapped by L, it is the activity paĴern with all
rows or slices active. To capture this, we also list the average number of active sub-blocks
in L(a) over all input paĴerns a ∈ A and denote it by w. So for each distribution, we
list the total number of activity paĴerns, the cardinality N, the entropy h and the average
sub-block weight w.

6.2 Difference propagation through the round function

We list the results on the distribution of the activity paĴerns at the output of a Kђѐѐюј- f
round due to differences with a single active row at its input in Table 2. Clearly, the low
entropies for lane sizes 1 and 2 and the corresponding high average row weights indicate
that most difference paĴerns map to the activity paĴern with all active rows (the total
number of rows for lane size 2ℓ is 2ℓ5).

y = 0 y = 1 y = 2 y = 3 y = 4
2ℓ N h w N h w N h w N h w N h w
1 1 0.00 5.00 1 0.00 5.00 1 0.00 5.00 1 0.00 5.00 1 0.00 5.00
2 11 1.97 9.35 10 1.78 9.35 11 1.97 9.32 9 1.72 9.35 12 2.16 9.32
4 26 4.60 15.54 28 4.73 15.29 29 4.82 15.41 27 4.63 15.41 28 4.73 15.35
8 31 4.95 19.22 31 4.95 19.09 31 4.95 19.22 31 4.95 19.35 31 4.95 19.22
16 31 4.95 23.09 31 4.95 23.09 31 4.95 23.09 31 4.95 23.09 31 4.95 23.09
32 31 4.95 25.29 31 4.95 25.29 31 4.95 25.29 31 4.95 25.29 31 4.95 25.29
64 31 4.95 25.54 31 4.95 25.54 31 4.95 25.54 31 4.95 25.54 31 4.95 25.54

Table 2. Output row-activity distribution for single-row differences at round input

Table 3 lists the results on the distribution of the slice- and row-activity paĴerns for all
input differences with a single active slice z = 0 and its in-kernel subspace. These results
can be understood by considering the effect of the steps of L. First θ computes the column
parities and complements some columns in slice z = 0 and slice z = 1. On the average,
these two slices contain about 25 active bits. Subsequently ρ moves these bits to different
slices and finally π moves the bits around within the slices. For the in-kernel subspace, θ
behaves as the identity, so at the input of ρ is a state with on the average 12.5 active bits.
ρ then moves these bits to different slices.

For slice-activity and considering all single-slice input differences, the average num-
ber of active slices is very high and the entropy remains very low up to lane size 8. This
is due to saturation: for most input differences, ρ moves active bits to all slices. Limiting
ourselves to the in-kernel differences, this saturation effect stops at lane size 4. Starting
from lane size 32, the 220 − 1 in-kernel differences have all different output activity pat-
terns. This is a direct consequence of the fact that the 25 ρ offset values are different for
lane sizes 32 and 64. Over all single-slice input differences, the entropy does not reach its
maximum value 25 and the average number of active slices reaches 22.5.

For row-activity the saturation effect is less powerful thanks to the fact that there are
five times more rows than slices in a state. Considering all single-slice input differences,
alignment becomes very weak at lane size 16 and entropy reaches its maximum at lane
size 32. Limited to the in-kernel states, full entropy is reached at lane size 16.

11

Resulting slice activity distribution Resulting row activity distribution
full single-slice set in-kernel subset full single-slice set in-kernel subset

2ℓ N h w N h w N h w N h w
1 1 0.00 1.00 1 0.00 1.00 31 1.00 4.84 26 1.00 4.84
2 3 0.0002 1.99 3 0.005 1.99 994 1.94 9.69 994 6.77 8.12
4 15 0.04 3.99 15 0.41 3.94 88743 11.86 15.50 50551 14.20 10.25
8 247 0.98 7.85 247 4.14 7.06 2004479 18.94 19.19 499711 18.60 11.50
16 50622 7.86 13.93 49999 14.18 10.25 16613375 23.68 22.37 1048575 20.00 12.00
32 5611775 19.66 20.25 1048575 20.00 12.50 33554431 25.00 24.50 1048575 20.00 12.50
64 12599295 22.87 22.50 1048575 20.00 12.50 33554431 25.00 24.75 1048575 20.00 12.50

Table 3. Output activity distributions for single-slice differences at round input

6.3 Difference propagation through the inverse round

When considering propagation of differences from the output of the round to the input
of the round, propagation goes through L−1 = θ−1 ◦ ρ−1 ◦ π−1. The inverses of the two
bit transpositions ρ and π do not differ much from their forward counterparts: ρ−1 still
moves bit along the z axis within the lanes and π−1 still moves bits within the slices. θ−1

however behaves very different from θ. When applied to a difference with a single active
bit (or a single columnwith odd parity), it flips the bits in about half of the columns of the
state. See Figure 4 for an illustration.

Table 4 lists characteristics for the distribution of row selection paĴerns at the round
input due to a difference at its output with a single active row. First π−1 moves the ac-
tive bits to different rows and then ρ−1 to different slices. Then θ−1 adds a number of
active columns. Clearly, the average number of active rows at the output indicates that
most inputs result in output activity paĴerns with almost all rows active. This results in
saturation for all lane sizes: a small number of differences at the output and low entropies.

y = 0 y = 1 y = 2 y = 3 y = 4
2ℓ N h w N h w N h w N h w N h w
1 1 0.00 5.00 1 0.00 5.00 1 0.00 5.00 1 0.00 5.00 1 0.00 5.00
2 4 0.61 9.74 4 0.61 9.74 3 0.40 9.90 3 0.40 9.90 4 0.61 9.74
4 4 0.61 19.61 4 0.61 19.54 4 0.61 19.90 3 0.40 19.67 5 0.81 18.83
8 10 1.78 37.67 4 0.61 39.03 5 0.81 39.45 4 0.74 39.06 5 0.94 37.90
16 5 0.94 75.96 5 0.81 77.83 6 1.14 76.16 6 1.01 76.61 6 1.01 76.67
32 6 1.01 153.38 6 1.01 153.71 3 0.40 155.42 5 0.94 149.16 6 1.01 156.29
64 6 1.01 304.25 5 0.81 310.83 4 0.61 310.55 4 0.74 303.41 5 0.81 310.83

Table 4. Input row-activity distribution for single-row differences at round output

Table 5 lists the results on the distribution of the slice- and row-activity paĴerns at the
round input for all output differences with a single active slice z = 0 and its in-kernel
subspace. The observed behaviour is very similar to that for the case of single-row dif-
ferences: high saturation for all lane sizes. There is no significant difference between the
distributions for all single-slice differences and for the in-kernel ones. This is no surprise
as in-kernel single-slice differences are mapped to differences outside the kernel by the
bit transpositions before arriving at the input of θ−1.

12

π-1, ρ-1, θ-1 π-1, ρ-1, θ-1 π-1, ρ-1, θ-1 π-1, ρ-1, θ-1 π-1, ρ-1, θ-1

Fig. 4.At the boĴom, from leĞ to right, the basis elements ei of differences in row (y, z) =
(0, 0) of Kђѐѐюј- f [200]; and on top, the corresponding values L−1(ei).

Resulting slice activity distribution Resulting row activity distribution
full single-slice set in-kernel subset full single-slice set in-kernel subset

2ℓ N h w N h w N h w N h w
1 1 0.00 1.00 1 0.00 1.00 31 1.00 4.84 31 1.69 4.68
2 3 0.0002 1.99 3 0.0003 1.99 675 1.96 9.68 335 1.86 9.68
4 15 0.02 3.99 11 0.02 3.99 11454 3.29 19.37 4174 3.28 19.37
8 98 0.27 7.97 66 0.27 7.97 21939 4.35 38.75 8126 4.34 38.75
16 1188 1.13 15.82 572 1.13 15.82 29892 5.38 77.50 12049 5.37 77.50
32 8856 2.83 31.26 2686 2.81 31.26 46230 6.06 154.65 11153 5.97 154.65
64 17413 4.29 61.40 6323 4.28 61.40 40359 6.12 305.78 14518 6.09 305.78

Table 5. Input activity distributions for single-slice differences at round output

13

π-1, ρ-1, θT π-1, ρ-1, θT π-1, ρ-1, θT π-1, ρ-1, θT π-1, ρ-1, θT

Fig. 5.At the boĴom, from leĞ to right, the basis elements ei ofmasks in row (y, z) = (0, 0)
of Kђѐѐюј- f [200]; and on top, the corresponding values LT(ei). The active mask bits are
depicted in blue.

6.4 Mask tracking through the round function

For tracking (linear) masks through the round function we adopt the convention taken in
[2]. In this convention, propagation of a mask from the output of a function to its input
is called direct. We introduce the term tracking here that is in our opinion more intuitive.
For direct tracking, we have LT = θT ◦ ρT ◦ πT. For bit transpositions it turns out that
the transpose is equal to the inverse. So we have LT = θT ◦ ρ−1 ◦ π−1. The transpose of θ
is somewhat harder to obtain and we refer the interested reader to [2] for its derivation.
What is important for understanding our results, is that the behaviour of θT is similar to
that of θ: when applied to a mask with a single active bit (or a single column with odd
parity), it flips the bits in two columns. See Figure 5 for an illustration.

Table 6 lists the characteristics of the distribution of row selection paĴerns at the round
input due to a linear mask at its output with a single active row. We can track the masks
through L. In this scenario, the bit transpositions are applied first, followed by the mixing
operation θT. This scenario leads to distributions that are very similar to that of difference
propagation from input to output of the round of Table 2. The only difference is that the
saturation effect reaches until width 4.

y = 0 y = 1 y = 2 y = 3 y = 4
2ℓ N h w N h w N h w N h w N h w
1 1 0.00 5.00 1 0.00 5.00 1 0.00 5.00 1 0.00 5.00 1 0.00 5.00
2 10 2.15 9.09 10 2.15 9.09 4 0.61 9.70 4 0.61 9.70 10 2.15 9.09
4 11 2.71 16.25 10 2.78 15.48 10 2.88 15.03 6 2.18 15.80 16 3.75 14.45
8 29 4.82 20.90 10 2.78 15.48 21 4.26 18.32 27 4.69 21.93 19 4.08 19.48
16 31 4.95 24.51 15 3.72 20.00 31 4.95 23.22 31 4.95 24.51 15 3.72 23.22
32 31 4.95 24.51 31 4.95 24.51 31 4.95 25.80 31 4.95 25.80 31 4.95 25.80
64 31 4.95 24.51 31 4.95 25.80 31 4.95 25.80 31 4.95 25.80 31 4.95 25.80

Table 6. Input row-activity distribution for single-row masks at round output

Table 7 lists the results on the distribution of the slice- and row-activity paĴerns for
all input masks with a single active slice z = 0 and its in-kernel subspace. First of all,

14

there is no significant difference between the distributions for all single-slice differences
and for the in-kernel ones. This is no surprise as similar to the case of propagation of
differences through the inverse round function, in-kernel single-slice masks are mapped
tomasks outside the kernel by the bit transpositions before arriving at the input of θT. The
bit transpositions are applied first,moving the active bits in a single slice to different slices.
At the input of θ there are a number of active bits that are relatively isolatedwhen the lane
size grows. The effect of θ is that for each of these bits two columns are complemented.
This explains the numbers for large lane size values: each of these bit results in about
two active slices, or 11 active rows aĞer θT. When the lane size decreases, this leads to
saturation.

Resulting slice activity distribution Resulting row activity distribution
full single-slice set in-kernel subset full single-slice set in-kernel subset

2ℓ N h w N h w N h w N h w
1 1 0.00 1.00 1 0.00 1.00 31 1.00 4.84 31 1.69 4.69
2 3 0.0002 1.99 3 0.0004 1.99 667 1.96 9.69 337 1.86 9.69
4 15 0.04 3.99 11 0.04 3.99 9298 3.52 19.28 3618 3.50 19.28
8 114 0.97 7.86 88 0.97 7.86 8854 5.40 37.72 4351 5.38 37.72
16 8089 7.66 13.94 5476 7.64 13.94 22910 9.37 68.37 11699 9.30 68.38
32 4953311 21.00 20.25 632861 18.91 20.25 5644799 21.30 100.25 682391 19.09 100.25
64 22020095 24.20 22.50 1048575 20.00 22.50 22020095 24.20 112.50 1048575 20.00 112.50

Table 7. Input activity distributions for single-slice masks at round output

6.5 Mask tracking through the inverse round function

When considering mask tracking from the round input to the round output, the function
to consider is L−T = π ◦ ρ ◦ θ−T. The mixing layer θ−T behaves qualitatively like θ−1, as
depicted in Figure 6.

Table 8 lists characteristics for the distribution of row selection paĴerns at the round
output due to a linear mask at its input with a single active row. In this scenario, the
mixing transformation is applied first, followed by the bit transpositions. The fact that
θ−T behaves verymuch like θ−1 clearly appears in the average number of active rows that
is close to the total number of rows that is similar to that for the case of activity paĴerns at
the round input for a single active row at the output of Table 4. However, the cardinality
N and the entropy are very different. This can be understood as follows: θ−T makes about
half of the columns active. Then ρ moves the active bits along the z-axis, followed by π
maps the bits within the slices. This may lead to some rows without active bits here and
there, and different from input to output. If the total number of rows is large enough, this
leads to different activity paĴerns.

Table 9 lists the results on the distribution of the slice- and row-activity paĴerns for all
input masks with a single active slice z = 0 and its in-kernel subspace. First of all, there
is a huge difference between the distributions for the full set of single-slice masks and for
the in-kernel ones. This is due to the fact that the bit transpositions come aĞer the mixing
layer. The behaviour of the kernel is actually identical to the case of difference propagation
through the round (Table 3) as in both cases we study the propagation through π ◦ ρ
(see also Figure 7). For the full single-slice set, we notice a very strong saturation for all
lane sizes. This is due to the fact that θ−T has the tendency to fill the state up with active
columns resulting in states with very high Hamming weight. The bit transposition then

15

θ-T

ρ, π

θ-T

ρ, π

θ-T

ρ, π

θ-T

ρ, π

θ-T

ρ, π

Fig. 6. On top, from leĞ to right, the basis elements ei of masks in row (y, z) = (0, 0)
of Kђѐѐюј- f [200]; in the middle, the effect of θ−T; and at the boĴom, the corresponding
values L−T(ei).

y = 0 y = 1 y = 2 y = 3 y = 4
2ℓ N h w N h w N h w N h w N h w
1 1 0.00 5.00 1 0.00 5.00 1 0.00 5.00 1 0.00 5.00 1 0.00 5.00
2 5 0.94 9.80 5 0.94 9.77 6 1.01 9.83 5 0.94 9.77 5 0.81 9.83
4 10 2.01 19.54 11 1.97 19.54 11 2.31 19.41 11 2.10 19.51 11 2.10 19.54
8 20 3.66 38.64 18 3.23 38.77 19 3.50 38.48 20 3.66 38.54 19 3.50 38.67
16 26 4.56 76.61 28 4.76 76.70 26 4.63 76.74 28 4.73 76.48 28 4.73 76.70
32 29 4.82 153.58 31 4.95 153.67 30 4.88 153.64 30 4.88 153.54 31 4.95 153.51
64 29 4.82 308.00 31 4.95 308.00 29 4.82 308.00 30 4.88 307.93 31 4.95 307.96

Table 8. Output row-activity distribution for single-row masks at round input

16

θ-T

ρ, π

Fig. 7. Example of propagation of a mask lying in the column parity kernel of
Kђѐѐюј- f [200].

move these bits around, but the number of active bits remains large. The large cardinality
N for the slice activity paĴerns is almost completely due to the kernel, while for the row
activities, N is about twice as large for the set all masks than for the kernel. AĞer some
investigations, it turned out that this is due to the existence of a class of masks with a
single active slice that lead to only two active slices aĞer θ−T. This class has the same size
as the subset of masks in the kernel and consists of all single-slice masks for which all five
columns have odd parity. This class only significantly affects the distributions of the row
activity with high lane size. For the other cases, this effect is drowned in the saturation.

Resulting slice activity distribution Resulting row activity distribution
full single-slice set in-kernel subset full single-slice set in-kernel subset

2ℓ N h w N h w N h w N h w
1 1 0.00 1.00 1 0.00 1.00 31 1.00 4.84 26 1.00 4.84
2 3 0.0002 1.99 3 0.005 1.99 994 1.95 9.69 994 6.77 8.13
4 15 0.02 3.99 15 0.41 3.94 50653 3.34 19.15 50551 14.20 10.25
8 247 0.24 7.97 247 4.14 7.06 500304 5.37 37.72 499711 18.60 11.50
16 49999 0.64 15.82 49999 14.19 10.25 1179743 7.08 74.44 1048575 20.00 12.00
32 1048640 1.21 31.27 1048575 20.00 12.50 2097215 7.02 148.94 1048575 20.00 12.50
64 1064960 1.46 61.40 1048575 20.00 12.50 2097195 6.66 298.50 1048575 20.00 12.50

Table 9. Output activity distributions for single-slice masks at round input

7 Conclusions

In this paper we have introduced the concept of alignment. It appears that especially for
non-keyedprimitives such as hash functions, strong alignment is aweapon in the hands of

17

the aĴacker. While it appears that in the design of many cryptographic primitives strong
alignment is the consequence of a design choice, this is not the case in Kђѐѐюј. The out-
come of our experiments suggest that the round function of Kђѐѐюј- f has in general weak
alignment. For the cases where there is noweak alignment, this is due to saturationwhere
the vast majority of differences/masks propagate to activity paĴerns that cover the com-
plete state.

References

1. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, Cryptographic sponge functions, January 2011, http:
//sponge.noekeon.org/.

2. , The Kђѐѐюј reference, January 2011, http://keccak.noekeon.org/.
3. J. Daemen, Cipher and hash function design strategies based on linear and differential cryptanalysis, PhD thesis,

K.U.Leuven, 1995.
4. J. Daemen and V. Rĳmen, The design of Rĳndael — AES, the advanced encryption standard, Springer-Verlag,

2002.
5. , Understanding two-round differentials in AES, SCN (Roberto De Prisco and Moti Yung, eds.), Lec-

ture Notes in Computer Science, vol. 4116, Springer, 2006, pp. 78–94.
6. , Plateau characteristics and AES, IET Information Security 1 (2007), no. 1, 11–17.
7. ECRYPT Network of excellence, The SHA-3 Zoo, 2011, http://ehash.iaik.tugraz.at/index.php/The_

SHA-3_Zoo.
8. H. Gilbert and T. Peyrin, Super-Sbox cryptanalysis: Improved aĴacks for AES-like permutations, FSE (Seokhie

Hong and Tetsu Iwata, eds.), Lecture Notes in Computer Science, vol. 6147, Springer, 2010, pp. 365–383.
9. K. Ideguchi, E. Tischhauser, and B. Preneel, Improved collision aĴacks on the reduced-round Grøstl hash func-

tion, ISC (Mike Burmester, Gene Tsudik, Spyros S. Magliveras, and Ivana Ilic, eds.), Lecture Notes in
Computer Science, vol. 6531, Springer, 2010, pp. 1–16.

10. D. Khovratovich, M. Naya-Plasencia, A. Röck, and M. Schläffer, Cryptanalysis of Luffa v2 components, Se-
lectedAreas in Cryptography (A. Biryukov, G. Gong, andD. R. Stinson, eds.), LectureNotes in Computer
Science, vol. 6544, Springer, 2010, pp. 388–409.

11. L. R. Knudsen, Truncated and higher order differentials, Fast SoĞware Encryption 1994 (B. Preneel, ed.),
Lecture Notes in Computer Science, vol. 1008, Springer, 1994, pp. 196–211.

12. K. Matusiewicz, M. Naya-Plasencia, I. Nikolic, Y. Sasaki, and M. Schläffer, Rebound aĴack on the full Lane
compression function, Asiacrypt (M. Matsui, ed.), Lecture Notes in Computer Science, vol. 5912, Springer,
2009, pp. 106–125.

13. F. Mendel, C. Rechberger, M. Schläffer, and S. Thomsen, The rebound aĴack: Cryptanalysis of reduced
Whirlpool and Grøstl, FSE (Orr Dunkelman, ed.), Lecture Notes in Computer Science, vol. 5665, Springer,
2009, pp. 260–276.

14. , Rebound aĴacks on the reduced Grøstl hash function, CT-RSA (Josef Pieprzyk, ed.), Lecture Notes in
Computer Science, vol. 5985, Springer, 2010, pp. 350–365.

15. M. Naya-Plasencia, Scrutinizing rebound aĴacks: new algorithms for improving the complexities, Cryptology
ePrint Archive, Report 2010/607, 2010, http://eprint.iacr.org/.

16. NIST, Federal information processing standard 197, advanced encryption standard (AES), November 2001.

18

http://sponge.noekeon.org/
http://sponge.noekeon.org/
http://keccak.noekeon.org/
http://ehash.iaik.tugraz.at/index.php/The_SHA-3_Zoo
http://ehash.iaik.tugraz.at/index.php/The_SHA-3_Zoo
http://eprint.iacr.org/

	On alignment in Keccak

