
Keccak

Guido Bertoni1 Joan Daemen1

Michaël Peeters2 Gilles Van Assche1

1STMicroelectronics

2NXP Semiconductors

Eurocrypt 2013
Athens, Greece, May 28th, 2013

1 / 57

Symmetric crypto: what textbooks and intro’s say

Symmetric cryptographic primitives:

Block ciphers

Stream ciphers

Hash functions

And their modes-of-use

Picture by GlasgowAmateur

2 / 57

Outline

1 The sponge construction

2 Inside Keccak

3 Outside Keccak (using sponge and duplex)

4 Keccak towards the SHA-3 standard

5 Further inside Keccak

3 / 57

The sponge construction

Outline

1 The sponge construction

2 Inside Keccak

3 Outside Keccak (using sponge and duplex)

4 Keccak towards the SHA-3 standard

5 Further inside Keccak

4 / 57

The sponge construction

Our beginning: RadioGatún

Initiative to design hash/stream function (late 2005)
rumours about NIST call for hash functions
forming of Keccak Team
starting point: fixing Panama [Daemen, Clapp, FSE 1998]

RadioGatún [Keccak team, NIST 2nd hash workshop 2006]

more conservative than Panama
arbitrary output length primitive
expressing security claim for arbitrary output length primitive

Sponge functions [Keccak team, Ecrypt hash, 2007]

… closest thing to a random oracle with a finite state …
Sponge construction calling random permutation

5 / 57

The sponge construction

The sponge construction

More general than a hash function: arbitrary-length output
Calls a b-bit permutation f, with b = r+ c

r bits of rate
c bits of capacity (security parameter)

6 / 57

The sponge construction

Generic security of the sponge construction

Theorem (Indifferentiability of the sponge construction)

The sponge construction calling a random permutation, S ′[F], is
(tD, tS,N, ϵ)-indifferentiable from a random oracle, for any tD, tS = O(N2),
N < 2c and for any ϵ with ϵ > fP(N) ≈ N

2c+1 .
[Keccak team, Eurocrypt 2008]

Informally, a random sponge is like a random oracle when N < 2c/2.

Collision-, preimage-resistance, etc., up to security strength c/2
The bound assumes f is a random permutation

It covers generic attacks
…but not attacks that exploit specific properties of f

7 / 57

The sponge construction

Design approach

Hermetic sponge strategy

Instantiate a sponge function

Claim a security level of 2c/2

Our mission

Design permutation f without exploitable properties

8 / 57

The sponge construction

How to build a strong permutation

Like a block cipher
Sequence of identical rounds
Round consists of sequence of simple step mappings

…but not quite
No key schedule
Round constants instead of round keys
Inverse permutation need not be efficient

9 / 57

Inside Keccak

Outline

1 The sponge construction

2 Inside Keccak

3 Outside Keccak (using sponge and duplex)

4 Keccak towards the SHA-3 standard

5 Further inside Keccak

10 / 57

Inside Keccak

Keccak

Instantiation of a sponge function
Using the permutation Keccak-f

7 permutations: b ∈ {25, 50, 100, 200, 400, 800, 1600}
… from toy over lightweight to high-speed …

SHA-3 instance: r = 1088 and c = 512
permutation width: 1600
security strength 256: post-quantum sufficient

Lightweight instance: r = 40 and c = 160
permutation width: 200
security strength 80: same as (initially expected from) SHA-1

See [The Keccak reference] for more details

11 / 57

Inside Keccak

Keccak

Instantiation of a sponge function
Using the permutation Keccak-f

7 permutations: b ∈ {25, 50, 100, 200, 400, 800, 1600}
… from toy over lightweight to high-speed …

SHA-3 instance: r = 1088 and c = 512
permutation width: 1600
security strength 256: post-quantum sufficient

Lightweight instance: r = 40 and c = 160
permutation width: 200
security strength 80: same as (initially expected from) SHA-1

See [The Keccak reference] for more details

11 / 57

Inside Keccak

Keccak

Instantiation of a sponge function
Using the permutation Keccak-f

7 permutations: b ∈ {25, 50, 100, 200, 400, 800, 1600}
… from toy over lightweight to high-speed …

SHA-3 instance: r = 1088 and c = 512
permutation width: 1600
security strength 256: post-quantum sufficient

Lightweight instance: r = 40 and c = 160
permutation width: 200
security strength 80: same as (initially expected from) SHA-1

See [The Keccak reference] for more details

11 / 57

Inside Keccak

The state: an array of 5× 5× 2ℓ bits

x

y z
state

5× 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)

(5× 5)-bit slices, 2ℓ of them

12 / 57

Inside Keccak

The state: an array of 5× 5× 2ℓ bits

x

y z
lane

5× 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)

(5× 5)-bit slices, 2ℓ of them

12 / 57

Inside Keccak

The state: an array of 5× 5× 2ℓ bits

x

y z
slice

5× 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)

(5× 5)-bit slices, 2ℓ of them

12 / 57

Inside Keccak

The state: an array of 5× 5× 2ℓ bits

x

y z
row

5× 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)

(5× 5)-bit slices, 2ℓ of them

12 / 57

Inside Keccak

The state: an array of 5× 5× 2ℓ bits

x

y z
column

5× 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)

(5× 5)-bit slices, 2ℓ of them

12 / 57

Inside Keccak

χ, the nonlinear mapping in Keccak-f

“Flip bit if neighbors exhibit 01 pattern”

Operates independently and in parallel on 5-bit rows

Cheap: small number of operations per bit

Algebraic degree 2, inverse has degree 3

LC/DC propagation properties easy to describe and analyze

13 / 57

Inside Keccak

Propagating differences through χ

The propagation weight…
… is equal to − log2(fraction of pairs);
… is determined by input difference only;
… is the size of the affine base;
… is the number of affine conditions.

14 / 57

Inside Keccak

θ′, a first attempt at mixing bits

Compute parity cx,z of each column

Add to each cell parity of neighboring columns:

bx,y,z = ax,y,z ⊕ cx−1,z ⊕ cx+1,z

Cheap: two XORs per bit

+ =

column parity θʹ effect

combine

15 / 57

Inside Keccak

Diffusion of θ′

θʹ

1+
(
1+ y+ y2 + y3 + y4

) (
x+ x4

)(
mod

⟨
1+ x5, 1+ y5, 1+ zw

⟩)

16 / 57

Inside Keccak

Diffusion of θ′ (kernel)

θʹ

1+
(
1+ y+ y2 + y3 + y4

) (
x+ x4

)(
mod

⟨
1+ x5, 1+ y5, 1+ zw

⟩)

17 / 57

Inside Keccak

Diffusion of the inverse of θ′

θʹ

1+
(
1+ y+ y2 + y3 + y4

) (
x2 + x3

)(
mod

⟨
1+ x5, 1+ y5, 1+ zw

⟩)

18 / 57

Inside Keccak

ρ for inter-slice dispersion

We need diffusion between the slices …
ρ: cyclic shifts of lanes with offsets

i(i+ 1)/2 mod 2ℓ, with
(
x
y

)
=

(
0 1
2 3

)i−1 (
1
0

)
Offsets cycle through all values below 2ℓ

19 / 57

Inside Keccak

ι to break symmetry

XOR of round-dependent constant to lane in origin
Without ι, the round mapping would be symmetric

invariant to translation in the z-direction
susceptible to rotational cryptanalysis

Without ι, all rounds would be the same
susceptibility to slide attacks
defective cycle structure

Without ι, we get simple fixed points (000 and 111)

20 / 57

Inside Keccak

A first attempt at Keccak-f

Round function: R = ι ◦ ρ ◦ θ′ ◦ χ

Problem: low-weight periodic trails by chaining:

χ θʹ ρ

χ: propagates unchanged with weight 4
θ′: propagates unchanged, because all column parities are 0
ρ: in general moves active bits to different slices …
…but not always

21 / 57

Inside Keccak

The Matryoshka property

χ θʹ ρ

χ θʹ ρ

Patterns in Q′ are z-periodic versions of patterns in Q

Weight of trail Q′ is twice that of trail Q (or 2n times in general)

22 / 57

Inside Keccak

π for disturbing horizontal/vertical alignment

ax,y ← ax′,y′ with
(
x
y

)
=

(
0 1
2 3

)(
x′

y′

)

23 / 57

Inside Keccak

A second attempt at Keccak-f

Round function: R = ι ◦ π ◦ ρ ◦ θ′ ◦ χ

Solves problem encountered before:

χ θʹ ρ π

π moves bits in same column to different columns!

Almost there, still a final tweak …

24 / 57

Inside Keccak

Tweaking θ′ to θ

θ

1+
(
1+ y+ y2 + y3 + y4

) (
x+ x4z

)(
mod

⟨
1+ x5, 1+ y5, 1+ zw

⟩)
25 / 57

Inside Keccak

Inverse of θ

θ

1+
(
1+ y+ y2 + y3 + y4

)
Q,

with Q = 1+ (1+ x+ x4z)−1 mod
⟨
1+ x5, 1+ zw

⟩
Q is dense, so:

Diffusion from single-bit output to input very high
Increases resistance against LC/DC and algebraic attacks

26 / 57

Inside Keccak

Keccak-f summary

Round function:
R = ι ◦ χ ◦ π ◦ ρ ◦ θ

Number of rounds: 12+ 2ℓ
Keccak-f[25] has 12 rounds
Keccak-f[1600] has 24 rounds

Efficiency [Keccak implementation overview]

high level of parallellism
flexibility: bit-interleaving
software: fast on wide range of CPU
dedicated hardware: very fast
suited for protection against side-channel attack
[Debande, Le and Keccak team, HASP 2012 + ePrint 2013/067]

27 / 57

Inside Keccak

Performance in software

Faster than SHA-2 on all modern PCs

KeccakTree faster than MD5 on some
platforms

C/b Algo Strength
4.79 keccakc256treed2 128
4.98 md5 broken! 64
5.89 keccakc512treed2 256
6.09 sha1 broken! 80
8.25 keccakc256 128
10.02 keccakc512 256
13.73 sha512 256
21.66 sha256 128

[eBASH, hydra6 (AMD Bulldozer),

http://bench.cr.yp.to/]

28 / 57

http://bench.cr.yp.to/

Inside Keccak

Efficient and flexible in hardware

From Kris Gaj’s presentation at SHA-3, Washington 2012:

29 / 57

Outside Keccak (using sponge and duplex)

Outline

1 The sponge construction

2 Inside Keccak

3 Outside Keccak (using sponge and duplex)

4 Keccak towards the SHA-3 standard

5 Further inside Keccak

30 / 57

Outside Keccak (using sponge and duplex)

Regular hashing

Electronic signatures

Data integrity (shaXsum …)

Data identifier (Git, online anti-virus, peer-2-peer …)

See [Cryptographic sponge functions] for more details

31 / 57

Outside Keccak (using sponge and duplex)

Salted hashing

Randomized hashing (RSASSA-PSS)

Password storage and verification (Kerberos, /etc/shadow)

32 / 57

Outside Keccak (using sponge and duplex)

Mask generation function

output length often dictated by application …
… rather than by security strength level

Key derivation function in SSL, TLS
Full-domain hashing in public key cryptography

electronic signatures RSASSA-PSS [PKCS#1]
encryption RSAES-OAEP [PKCS#1]
key encapsulation methods (KEM)

33 / 57

Outside Keccak (using sponge and duplex)

Message authentication codes

0 f f

Key

…

Padded message

f ff

MAC

As a message authentication code
Simpler than HMAC [FIPS 198]

Required for SHA-1, SHA-2 due to length extension property
HMAC is no longer needed for sponge!

34 / 57

Outside Keccak (using sponge and duplex)

Stream encryption

0 f f

Key IV

f

Key stream

As a stream cipher
Long output stream per IV: similar to OFB mode
Short output stream per IV: similar to counter mode

35 / 57

Outside Keccak (using sponge and duplex)

Single pass authenticated encryption

0 f f

Key

…

Padded messageIV

f

Key stream

ff

MAC

Authentication and encryption in a single pass!

Secure messaging (SSL/TLS, SSH, IPSEC …)

36 / 57

Outside Keccak (using sponge and duplex)

The duplex construction

Generic security equivalent to Sponge [Keccak team, SAC 2011]

Applications include:
Authenticated encryption: spongeWrap
Reseedable pseudorandom sequence generator

37 / 57

Keccak towards the SHA-3 standard

Outline

1 The sponge construction

2 Inside Keccak

3 Outside Keccak (using sponge and duplex)

4 Keccak towards the SHA-3 standard

5 Further inside Keccak

38 / 57

Keccak towards the SHA-3 standard

Output length oriented approach

Output Collision Pre-image Required Relative SHA-3
length resistance resistance capacity perf. instance

n = 224 s ≤ 112 s ≤ 224 c = 448 ×1.125 SHA3n224
n = 256 s ≤ 128 s ≤ 256 c = 512 ×1.063 SHA3n256
n = 384 s ≤ 192 s ≤ 384 c = 768 ÷1.231 SHA3n384
n = 512 s ≤ 256 s ≤ 512 c = 1024 ÷1.778 SHA3n512
n s ≤ n/2 s ≤ n c = 2n × 1600−c

1024

s: security strength level [NIST SP 800-57]

These instances address the SHA-3 requirements, but:
multiple security strengths each
levels outside of [NIST SP 800-57] range

Performance penalty!

39 / 57

Keccak towards the SHA-3 standard

Security strength oriented approach

Security Collision Pre-image Required Relative SHA-3
strength resistance resistance capacity perf. instance

s = 112 n ≥ 224 n ≥ 112 c = 224 ×1.343 SHA3c224
s = 128 n ≥ 256 n ≥ 128 c = 256 ×1.312 SHA3c256
s = 192 n ≥ 384 n ≥ 192 c = 384 ×1.188 SHA3c384
s = 256 n ≥ 512 n ≥ 256 c = 512 ×1.063 SHA3c512
s n ≥ 2s n ≥ s c = 2s × 1600−c

1024 SHA3[c=2s]

s: security strength level [NIST SP 800-57]

These SHA-3 instances
are consistent with philosophy of [NIST SP 800-57]
provide a one-to-one mapping to security strength levels

Higher efficiency

40 / 57

Keccak towards the SHA-3 standard

NIST SHA-3 standardization plans

A new FIPS number (not 180-n)

Two capacities: 256 and 512

6 instances with domain separation between them

Tree-hashing ready: Sakura coding

Sponge instances SHA-2 drop-in replacements
Keccak[c = 256](M||11||11)

⌊Keccak[c = 256](M||11||001)⌋224
⌊Keccak[c = 256](M||11||101)⌋256

Keccak[c = 512](M||11||11)
⌊Keccak[c = 512](M||11||001)⌋384
⌊Keccak[c = 512](M||11||101)⌋512

41 / 57

Keccak towards the SHA-3 standard

Sakura and tree hashing
.

.

Sound tree hashing is relatively easy to achieve

Sufficient conditions for indifferentiability from RO
[Keccak team, ePrint 2009/210 — updated April 2013]

Defining tree hash modes addressing all future use cases is hard
A chosen number of leaves for a chosen amount of parallelism?
Or a binary tree with the option of saving intermediate hash results?

Defining future-proof tree hash coding is easy

Sakura, a flexible coding for tree hashing

Automatically satisfying the sufficient conditions of [ePrint 2009/210]
For any underlying hash function (not just Keccak)
For any tree topology
⇒ no conflicts adding future tree structures

See [Keccak team, ePrint 2013/231] for more details

42 / 57

Keccak towards the SHA-3 standard

Sakura and tree hashing
.

.

Sound tree hashing is relatively easy to achieve

Sufficient conditions for indifferentiability from RO
[Keccak team, ePrint 2009/210 — updated April 2013]

Defining tree hash modes addressing all future use cases is hard
A chosen number of leaves for a chosen amount of parallelism?
Or a binary tree with the option of saving intermediate hash results?

Defining future-proof tree hash coding is easy

Sakura, a flexible coding for tree hashing

Automatically satisfying the sufficient conditions of [ePrint 2009/210]
For any underlying hash function (not just Keccak)
For any tree topology
⇒ no conflicts adding future tree structures

See [Keccak team, ePrint 2013/231] for more details

42 / 57

Keccak towards the SHA-3 standard

Sakura and tree hashing
.

.

Sound tree hashing is relatively easy to achieve

Sufficient conditions for indifferentiability from RO
[Keccak team, ePrint 2009/210 — updated April 2013]

Defining tree hash modes addressing all future use cases is hard
A chosen number of leaves for a chosen amount of parallelism?
Or a binary tree with the option of saving intermediate hash results?

Defining future-proof tree hash coding is easy

Sakura, a flexible coding for tree hashing

Automatically satisfying the sufficient conditions of [ePrint 2009/210]
For any underlying hash function (not just Keccak)
For any tree topology
⇒ no conflicts adding future tree structures

See [Keccak team, ePrint 2013/231] for more details

42 / 57

Further inside Keccak

Outline

1 The sponge construction

2 Inside Keccak

3 Outside Keccak (using sponge and duplex)

4 Keccak towards the SHA-3 standard

5 Further inside Keccak

43 / 57

Further inside Keccak

Design decisions behind Keccak-f

Ability to control propagation of differences or linear masks
Differential/linear trail analysis
Lower bounds for trail weights
Alignment and trail clustering
⇒ This shaped θ, π and ρ

Algebraic properties
Distribution of # terms of certain degrees
Ability of solving certain problems (CICO) algebraically
Zero-sum distinguishers (third party)
⇒ This determined the number of rounds

Analysis of symmetry properties
⇒ This shaped ι

44 / 57

Further inside Keccak

Design decisions behind Keccak-f

Ability to control propagation of differences or linear masks
Differential/linear trail analysis
Lower bounds for trail weights
Alignment and trail clustering
⇒ This shaped θ, π and ρ

Algebraic properties
Distribution of # terms of certain degrees
Ability of solving certain problems (CICO) algebraically
Zero-sum distinguishers (third party)
⇒ This determined the number of rounds

Analysis of symmetry properties
⇒ This shaped ι

44 / 57

Further inside Keccak

Non-linear mapping χ

Transforms each row independently
E.g., a difference going through χ

Output: affine space

χ

45 / 57

Further inside Keccak Alignment

Difference propagation in Rijndael: strong alignment

Propagation of differentials:
One-to-one through MixColumns, ShiftRows and
AddRoundKey
One-to-multiple through SubBytes

Propagation of truncated differentials (active/passive bytes)
One-to-one through SubBytes, ShiftRows and AddRoundKey
One-to-multiple through MixColumns

Sometimes one-to-one: 1 byte→ 4 bytes

SubBytes ShiftRows MixColumns

See also [Daemen and Rijmen, Understanding two-round AES differentials, SCN ’06]

46 / 57

Further inside Keccak Alignment

Alignment

Property of round function [On alignment in Keccak, Hash Workshop 2011]

relative to partition of state in blocks

Strong alignment
Low uncertainty in propagation along block boundaries
E.g., Rijndael strongly aligned on byte boundaries

Weak alignment
High uncertainty in propagation along block boundaries
E.g., Keccak weakly aligned on row boundaries…

47 / 57

Further inside Keccak Alignment

Differential patterns

θ

ρ, π

θ

ρ, π

θ

ρ, π

θ

ρ, π

θ

ρ, π

48 / 57

Further inside Keccak Alignment

Differential patterns (backwards)

π-1, ρ-1, θ-1 π-1, ρ-1, θ-1 π-1, ρ-1, θ-1 π-1, ρ-1, θ-1 π-1, ρ-1, θ-1

49 / 57

Further inside Keccak Alignment

Linear patterns

π-1, ρ-1, θT π-1, ρ-1, θT π-1, ρ-1, θT π-1, ρ-1, θT π-1, ρ-1, θT

50 / 57

Further inside Keccak Alignment

Linear patterns (backwards)

θ-T

ρ, π

θ-T

ρ, π

θ-T

ρ, π

θ-T

ρ, π

θ-T

ρ, π

51 / 57

Further inside Keccak Alignment

Benefits of weak alignment

θ

ρ, π

θ

ρ, π

θ

ρ, π

θ

ρ, π

θ

ρ, π

Weak alignment means trails tend to diverge

Low clustering of trails
Hard to build truncated differential trails
Rebound attacks become very expensive
e.g., [Duc et al., Unaligned Rebound Attack: Appl. to Keccak, FSE 2012]

See [On alignment in Keccak] for more details

52 / 57

Further inside Keccak Bounding differential and linear trail weights

Bounding differential and linear trail weights

Why bound trail weights?

We want to base Keccak security on absence of exploitable trails
…and not on presumed hardness of finding them

Future: use of reduced-round versions of Keccak-f

⇒ Find good bound on differential and linear trails

53 / 57

Further inside Keccak Bounding differential and linear trail weights

Bounds for differential and linear trails in Keccak-f[b]

Tight bounds for Keccak-f[25] to Keccak-f[200] [The Keccak reference]

Current bounds for differential trails in Keccak-f[1600] [FSE 2012]

Rounds Lower bound Best known

1 2 2
2 8 8
3 32 [Keccak team] 32 [Duc et al.]

4 134 [Keccak team]

5 510 [Naya-Plasencia et al.]

6 74 [Keccak team] 1360 [Keccak team]

24 296 ???

Open problems:
Narrow the gap between bounds and known trails
Look more closely at Keccak-f[400] and Keccak-f[800]
Bounds for linear trails in Keccak-f[1600]

54 / 57

Further inside Keccak Bounding differential and linear trail weights

Bounds for differential and linear trails in Keccak-f[b]

Tight bounds for Keccak-f[25] to Keccak-f[200] [The Keccak reference]

Current bounds for differential trails in Keccak-f[1600] [FSE 2012]

Rounds Lower bound Best known

1 2 2
2 8 8
3 32 [Keccak team] 32 [Duc et al.]

4 134 [Keccak team]

5 510 [Naya-Plasencia et al.]

6 74 [Keccak team] 1360 [Keccak team]

24 296 ???

Open problems:
Narrow the gap between bounds and known trails
Look more closely at Keccak-f[400] and Keccak-f[800]
Bounds for linear trails in Keccak-f[1600]

54 / 57

Conclusion

What textbooks and intro’s should say from now on :-)

Symmetric cryptographic primitives:

Permutations

Block ciphers

Stream ciphers

Hash functions

And their modes-of-use
Picture by Sébastien Wiertz

55 / 57

Conclusion

Questions?

http://sponge.noekeon.org/
http://keccak.noekeon.org/

56 / 57

http://sponge.noekeon.org/
http://keccak.noekeon.org/

Conclusion

Our references
.

.

Sakura: a flexible coding for tree hashing, ePrint 2013
Debande, Le and KT, PA of HW impl. protected with secret sharing, HASP 2012
Permutation-based enc., auth. and auth. enc., DIAC 2012
Differential propagation in Keccak, FSE 2012
Van Keer and KT, Keccak implementation overview (version 3.1 or later)
KeccakTools (version 3.2 or later)
Duplexing the sponge: authenticated enc. and other applications, SAC 2011
On alignment in Keccak, Ecrypt II Hash Workshop 2011
On the security of the keyed sponge construction, SKEW 2011
The Keccak reference (version 3.0 or later)
The Keccak SHA-3 submission, 2011
Building power analysis resistant implementations of Keccak, SHA-3 2010
Sponge-based pseudo-random number generators, CHES 2010
Note on zero-sum distinguishers of Keccak-f, NIST hash forum 2010
Note on Keccak parameters and usage, NIST hash forum 2010
Sufficient conditions for sound tree and seq. hashing modes, ePrint 2009
Note on side-channel attacks and their counterm…, NIST hash forum 2009
The road from Panama to Keccak via RadioGatún, Dagstuhl 2009
Cryptographic sponge functions (version 0.1 or later)
On the indifferentiability of the sponge construction, Eurocrypt 2008

Sponge functions, comment to NIST and Ecrypt Hash Workshop 2007

http://sponge.noekeon.org/papers.html

http://keccak.noekeon.org/papers.html

57 / 57

http://sponge.noekeon.org/papers.html
http://keccak.noekeon.org/papers.html

	The sponge construction
	Inside Keccak
	Outside Keccak (using sponge and duplex)
	Keccak towards the SHA-3 standard
	Further inside Keccak
	Alignment
	Bounding differential and linear trail weights

