
KangarooTwelve: fast hashing based on Keccak-p

Guido Bertoni3 Joan Daemen1,2 Michaël Peeters1
Gilles Van Assche1 Ronny Van Keer1 Benoît Viguier2

1STMicroelectronics
2Radboud University
3Security Pattern

The 16th International Conference on
Applied Cryptography and Network Security

Leuven, Belgium, July 2018

1 / 19

Outline

1 What is KangarooTwelve?

2 Security vs speed

3 Speed vs security

2 / 19

What is KangarooTwelve?

Outline

1 What is KangarooTwelve?

2 Security vs speed

3 Speed vs security

3 / 19

What is KangarooTwelve?

Let’s start from SHAKE128

input output

outer
inner

0

0

r

c

f f f f f f

absorbing squeezingeXtendable Output Function
Sponge construction
Uses Keccak-p[1600,nr = 24]
No parallelism at construction level

4 / 19

What is KangarooTwelve?

From SHAKE128 to KangarooTwelve

S0 0300* CV CV CV … CV CV n-1 FFFF 06

S1

0B

S2

0B

S3

0B

Sn-2

0B

Sn-1

0B

eXtendable Output Function
Tree on top of sponge construction
Uses Keccak-p[1600,nr = 12]
Parallelism grows automatically with input size

5 / 19

What is KangarooTwelve?

From SHAKE128 to KangarooTwelve

S0 0300* CV CV CV … CV CV n-1 FFFF 06

S1

0B

S2

0B

S3

0B

Sn-2

0B

Sn-1

0B

eXtendable Output Function
Tree on top of sponge const. +Sakura coding
Uses Keccak-p[1600,nr = 12]
Parallelism grows automatically with input size

5 / 19

What is KangarooTwelve?

From SHAKE128 to KangarooTwelve

S0 0300* CV CV CV … CV CV n-1 FFFF 06

S1

0B

S2

0B

S3

0B

Sn-2

0B

Sn-1

0B

eXtendable Output Function
Tree on top of sponge const. +Sakura coding +kangaroo hopping
Uses Keccak-p[1600,nr = 12]
Parallelism grows automatically with input size

5 / 19

What is KangarooTwelve?

From SHAKE128 to KangarooTwelve

S0 0300* CV CV CV … CV CV n-1 FFFF 06

S1

0B

S2

0B

S3

0B

Sn-2

0B

Sn-1

0B

eXtendable Output Function
Tree on top of sponge const. +Sakura coding +kangaroo hopping
Uses Keccak-p[1600,nr = 12]
Parallelism grows automatically with input size (per 8KiB)

5 / 19

Security vs speed

Outline

1 What is KangarooTwelve?

2 Security vs speed

3 Speed vs security

6 / 19

Security vs speed

KangarooTwelve targets 128-bit security

Flat sponge claim: 128-bit security strength
Collision resistance
(Second-) preimage resistance

Multi-target preimage resistance
Chosen-target forced-prefix preimage resistance

Correlation-freeness
Resistance against length-extension attacks
…

What about 256-bit security?
Philosophically much higher
But practically the same: well above the attacker’s budget
MarsupilamiFourteen

7 / 19

Security vs speed

KangarooTwelve targets 128-bit security

Flat sponge claim: 128-bit security strength
Collision resistance
(Second-) preimage resistance

Multi-target preimage resistance
Chosen-target forced-prefix preimage resistance

Correlation-freeness
Resistance against length-extension attacks
…

What about 256-bit security?
Philosophically much higher
But practically the same: well above the attacker’s budget
MarsupilamiFourteen

7 / 19

Security vs speed

KangarooTwelve targets 128-bit security

Flat sponge claim: 128-bit security strength
Collision resistance
(Second-) preimage resistance

Multi-target preimage resistance
Chosen-target forced-prefix preimage resistance

Correlation-freeness
Resistance against length-extension attacks
…

What about 256-bit security?
Philosophically much higher
But practically the same: well above the attacker’s budget
MarsupilamiFourteen

7 / 19

Security vs speed

KangarooTwelve targets 128-bit security

Flat sponge claim: 128-bit security strength
Collision resistance
(Second-) preimage resistance

Multi-target preimage resistance
Chosen-target forced-prefix preimage resistance

Correlation-freeness
Resistance against length-extension attacks
…

What about 256-bit security?
Philosophically much higher
But practically the same: well above the attacker’s budget
MarsupilamiFourteen

7 / 19

Security vs speed

First pillar of security in symmetric cryptography

Generic security
Strong mathematical proofs
⇒ mode introduces no weaknesses
⇒ scope of cryptanalysis focused on primitive

In our case:
[EuroCrypt 2008] – On the Indifferentiability of the Sponge Construction
[IJIS 2014] – Sufficient conditions for sound tree and sequential hashing modes
[ACNS 2014] – Sakura: A Flexible Coding for Tree Hashing

8 / 19

Security vs speed

First pillar of security in symmetric cryptography

Generic security
Strong mathematical proofs
⇒ mode introduces no weaknesses
⇒ scope of cryptanalysis focused on primitive

In our case:
[EuroCrypt 2008] – On the Indifferentiability of the Sponge Construction
[IJIS 2014] – Sufficient conditions for sound tree and sequential hashing modes
[ACNS 2014] – Sakura: A Flexible Coding for Tree Hashing

8 / 19

Security vs speed

First pillar of security in symmetric cryptography

Generic security
Strong mathematical proofs
⇒ mode introduces no weaknesses
⇒ scope of cryptanalysis focused on primitive

In our case:
[EuroCrypt 2008] – On the Indifferentiability of the Sponge Construction
[IJIS 2014] – Sufficient conditions for sound tree and sequential hashing modes
[ACNS 2014] – Sakura: A Flexible Coding for Tree Hashing

8 / 19

Security vs speed

Second pillar of security in symmetric cryptography

Security of the primitive
No proof!
⇒ publicly documented design rationale
⇒ cryptanalysis!

In our case:
Ten years of cryptanalysis on (reduced-round) Keccak-f[1600]
⇐ tune the number of rounds
⇐ no tweak!

9 / 19

Security vs speed

Second pillar of security in symmetric cryptography

Security of the primitive
No proof!
⇒ publicly documented design rationale
⇒ cryptanalysis!

In our case:
Ten years of cryptanalysis on (reduced-round) Keccak-f[1600]
⇐ tune the number of rounds
⇐ no tweak!

9 / 19

Security vs speed

Second pillar of security in symmetric cryptography

Security of the primitive
No proof!
⇒ publicly documented design rationale
⇒ cryptanalysis!

In our case:
Ten years of cryptanalysis on (reduced-round) Keccak-f[1600]
⇐ tune the number of rounds
⇐ no tweak!

9 / 19

Security vs speed

Second pillar of security in symmetric cryptography

Security of the primitive
No proof!
⇒ publicly documented design rationale
⇒ third-party cryptanalysis!

In our case:
Ten years of cryptanalysis on (reduced-round) Keccak-f[1600]
⇐ tune the number of rounds
⇐ no tweak!

9 / 19

Security vs speed

Second pillar of security in symmetric cryptography

Security of the primitive
No proof!
⇒ publicly documented design rationale
⇒ lots of third-party cryptanalysis!

In our case:
Ten years of cryptanalysis on (reduced-round) Keccak-f[1600]
⇐ tune the number of rounds
⇐ no tweak!

9 / 19

Security vs speed

Second pillar of security in symmetric cryptography

Security of the primitive
No proof!
⇒ publicly documented design rationale
⇒ lots of third-party cryptanalysis!

In our case:
Ten years of cryptanalysis on (reduced-round) Keccak-f[1600]
⇐ tune the number of rounds
⇐ no tweak!

9 / 19

Security vs speed

Status of Keccak & KangarooTwelve cryptanalysis
Ke

cc
ak

-f
 [1

60
0]

0

3

6

9

12

15

18

21

24
Collision attacks up to 5 rounds

Also up to 6 rounds, but for non-standard
parameters (c = 160)

[Song, Liao, Guo, CRYPTO 2017]
Distinguishers

7 rounds (practical time)
[Huang et al., EUROCRYPT 2017]
8 rounds (2128 time, academic)
[Dinur et al., EUROCRYPT 2015]

Lots of third-party cryptanalysis available at:
https://keccak.team/third_party.html

10 / 19

https://keccak.team/third_party.html

Speed vs security

Outline

1 What is KangarooTwelve?

2 Security vs speed

3 Speed vs security

11 / 19

Speed vs security

Low-end vs high-end

How to optimize for both low-end and high-end platforms?
Avoid 32-bit/64-bit mismatches

32-bit 64-bit
SHA-256 √

±
SHA-512 ±

√

12 / 19

Speed vs security

Low-end vs high-end

How to optimize for both low-end and high-end platforms?
Avoid 32-bit/64-bit mismatches

32-bit 64-bit
SHA-256 √

±
SHA-512 ±

√

12 / 19

Speed vs security

Bit interleaving

= +

32-bit 64-bit
Keccak-f[800] √

±
Keccak-f[1600] √ √

⇒ let’s stick to Keccak-f[1600]

13 / 19

Speed vs security

Exploit parallelism

At the high end:
SIMD with growing widths

128, 256 and now 512 bits
Multiple cores

⇒ let’s exploit this parallelism

To remain efficient at the low end:
One-level tree
Kangaroo hopping

14 / 19

Speed vs security

Exploit parallelism

At the high end:
SIMD with growing widths

128, 256 and now 512 bits
Multiple cores

⇒ let’s exploit this parallelism

To remain efficient at the low end:
One-level tree
Kangaroo hopping

14 / 19

Speed vs security

Short messages (≤ 8KiB)

Kangaroo hopping No kangaroo hopping

S0 07 CV 1 FFFF 06

S0

0B

one call to F two calls to F

15 / 19

Speed vs security

How fast is KangarooTwelve?

Twice as fast as SHAKE128 on short inputs ≤ 8KiB
Much faster with parallelism on long inputs≫ 8KiB

Short input Long input
Intel® Core™ i5-4570 (Haswell) 3.68 c/b 1.44 c/b
Intel® Core™ i5-6500 (Skylake) 2.89 c/b 1.22 c/b
Intel® Core™ i7-7800X (SkylakeX) 2.06 c/b 0.55 c/b

Single core only.

16 / 19

Speed vs security

How fast is KangarooTwelve? (AVX2)

Skylake (AVX2)
cycles/byte

KangarooTwelve 1.22
KangarooTwelve (≤ 8KiB) 2.89
ParallelHash128 2.31
SHAKE128 5.56
SHA-256 6.91
SHA-512 4.64
Blake2bp 1.34
Blake2sp 1.29
Blake2b 3.04
Blake2s 4.85

17 / 19

Speed vs security

How fast is KangarooTwelve? (AVX-512)

Skylake (AVX2) vs SkylakeX (AVX-512)
cycles/byte

KangarooTwelve 1.22 0.55
KangarooTwelve (≤ 8KiB) 2.89 2.07
ParallelHash128 2.31 0.96
SHAKE128 5.56 4.12
SHA-256 6.91 6.65
SHA-512 4.64 4.44
Blake2bp 1.34 1.39
Blake2sp 1.29 1.22
Blake2b 3.04 2.98
Blake2s 4.85 4.26

Not all optimized for AVX-512 yet

18 / 19

Speed vs security

How fast is KangarooTwelve? (AVX-512)

Skylake (AVX2) vs SkylakeX (AVX-512)
cycles/byte

KangarooTwelve 1.22 0.55
KangarooTwelve (≤ 8KiB) 2.89 2.07
ParallelHash128 2.31 0.96
SHAKE128 5.56 4.12
SHA-256 6.91 6.65
SHA-512 4.64 4.44
Blake2bp 1.34 1.39
Blake2sp 1.29 1.22
Blake2b 3.04 2.98
Blake2s 4.85 4.26

Not all optimized for AVX-512 yet

18 / 19

Speed vs security

How fast is KangarooTwelve? (AVX-512)

Skylake (AVX2) vs SkylakeX (AVX-512)
cycles/byte

KangarooTwelve 1.22 0.55
KangarooTwelve (≤ 8KiB) 2.89 2.07
ParallelHash128 2.31 0.96
SHAKE128 5.56 4.12
SHA-256 6.91 6.65
SHA-512 4.64 4.44
Blake2bp 1.34 1.39
Blake2sp 1.29 1.22
Blake2b 3.04 2.98
Blake2s 4.85 4.26

Not all optimized for AVX-512 yet

18 / 19

Conclusions

Any questions?

Thanks for your attention!
More information
https://keccak.team/kangarootwelve.html
Some implementations
https://github.com/gvanas/KeccakCodePackage (C, Python)
https://github.com/kerukuro/digestpp (C++)
https://github.com/mimoo/GoKangarooTwelve (Go)
https://rubygems.org/gems/digest-kangarootwelve (Ruby)
https://github.com/damaki/libkeccak (Ada)
Benoît’s RFC draft
https://datatracker.ietf.org/doc/draft-viguier-kangarootwelve/

19 / 19

https://keccak.team/kangarootwelve.html
https://github.com/gvanas/KeccakCodePackage
https://github.com/kerukuro/digestpp
https://github.com/mimoo/GoKangarooTwelve
https://rubygems.org/gems/digest-kangarootwelve
https://github.com/damaki/libkeccak
https://datatracker.ietf.org/doc/draft-viguier-kangarootwelve/

	What is KangarooTwelve?
	Security vs speed
	Speed vs security

