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What is KangarooTwelve?

Let’s start from SHAKE128
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absorbing squeezingeXtendable Output Function
Sponge construction
Uses Keccak-p[1600,nr = 24]
No parallelism at construction level
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eXtendable Output Function
Tree on top of sponge const. +Sakura coding +kangaroo hopping
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Security vs speed

KangarooTwelve targets 128-bit security

Flat sponge claim: 128-bit security strength
Collision resistance
(Second-) preimage resistance

Multi-target preimage resistance
Chosen-target forced-prefix preimage resistance

Correlation-freeness
Resistance against length-extension attacks
…

What about 256-bit security?
Philosophically much higher
But practically the same: well above the attacker’s budget
MarsupilamiFourteen
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Security vs speed

First pillar of security in symmetric cryptography

Generic security
Strong mathematical proofs
⇒ mode introduces no weaknesses
⇒ scope of cryptanalysis focused on primitive

In our case:
[EuroCrypt 2008] – On the Indifferentiability of the Sponge Construction
[IJIS 2014] – Sufficient conditions for sound tree and sequential hashing modes
[ACNS 2014] – Sakura: A Flexible Coding for Tree Hashing
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Security vs speed

Second pillar of security in symmetric cryptography

Security of the primitive
No proof!
⇒ publicly documented design rationale
⇒ cryptanalysis!

In our case:
Ten years of cryptanalysis on (reduced-round) Keccak-f[1600]
⇐ tune the number of rounds
⇐ no tweak!
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Security vs speed

Status of Keccak & KangarooTwelve cryptanalysis
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Collision attacks up to 5 rounds

Also up to 6 rounds, but for non-standard
parameters (c = 160)

[Song, Liao, Guo, CRYPTO 2017]
Distinguishers

7 rounds (practical time)
[Huang et al., EUROCRYPT 2017]
8 rounds (2128 time, academic)
[Dinur et al., EUROCRYPT 2015]

Lots of third-party cryptanalysis available at:
https://keccak.team/third_party.html
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Speed vs security

Low-end vs high-end

How to optimize for both low-end and high-end platforms?
Avoid 32-bit/64-bit mismatches

32-bit 64-bit
SHA-256 √

±
SHA-512 ±

√
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Speed vs security

Bit interleaving

= +

32-bit 64-bit
Keccak-f[ 800] √

±
Keccak-f[1600] √ √

⇒ let’s stick to Keccak-f[1600]
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Speed vs security

Exploit parallelism

At the high end:
SIMD with growing widths

128, 256 and now 512 bits
Multiple cores

⇒ let’s exploit this parallelism

To remain efficient at the low end:
One-level tree
Kangaroo hopping
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Speed vs security

Short messages (≤ 8KiB)

Kangaroo hopping No kangaroo hopping

S0 07 CV 1 FFFF 06

S0

0B

one call to F two calls to F
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Speed vs security

How fast is KangarooTwelve?

Twice as fast as SHAKE128 on short inputs ≤ 8KiB
Much faster with parallelism on long inputs≫ 8KiB

Short input Long input
Intel® Core™ i5-4570 (Haswell) 3.68 c/b 1.44 c/b
Intel® Core™ i5-6500 (Skylake) 2.89 c/b 1.22 c/b
Intel® Core™ i7-7800X (SkylakeX) 2.06 c/b 0.55 c/b

Single core only.
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Speed vs security

How fast is KangarooTwelve? (AVX2)

Skylake (AVX2)
cycles/byte

KangarooTwelve 1.22
KangarooTwelve (≤ 8KiB) 2.89
ParallelHash128 2.31
SHAKE128 5.56
SHA-256 6.91
SHA-512 4.64
Blake2bp 1.34
Blake2sp 1.29
Blake2b 3.04
Blake2s 4.85
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Speed vs security

How fast is KangarooTwelve? (AVX-512)

Skylake (AVX2) vs SkylakeX (AVX-512)
cycles/byte

KangarooTwelve 1.22 0.55
KangarooTwelve (≤ 8KiB) 2.89 2.07
ParallelHash128 2.31 0.96
SHAKE128 5.56 4.12
SHA-256 6.91 6.65
SHA-512 4.64 4.44
Blake2bp 1.34 1.39
Blake2sp 1.29 1.22
Blake2b 3.04 2.98
Blake2s 4.85 4.26

Not all optimized for AVX-512 yet
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Conclusions

Any questions?

Thanks for your attention!
More information
https://keccak.team/kangarootwelve.html
Some implementations
https://github.com/gvanas/KeccakCodePackage (C, Python)
https://github.com/kerukuro/digestpp (C++)
https://github.com/mimoo/GoKangarooTwelve (Go)
https://rubygems.org/gems/digest-kangarootwelve (Ruby)
https://github.com/damaki/libkeccak (Ada)
Benoît’s RFC draft
https://datatracker.ietf.org/doc/draft-viguier-kangarootwelve/

19 / 19

https://keccak.team/kangarootwelve.html
https://github.com/gvanas/KeccakCodePackage
https://github.com/kerukuro/digestpp
https://github.com/mimoo/GoKangarooTwelve
https://rubygems.org/gems/digest-kangarootwelve
https://github.com/damaki/libkeccak
https://datatracker.ietf.org/doc/draft-viguier-kangarootwelve/

	What is KangarooTwelve?
	Security vs speed
	Speed vs security

